

Application description

KNX multifunctional push-button 1gang 2-fold KNX multifunctional push-button 3-fold KNX multifunctional push-button
4-fold KNX multifunctional push-button

Table of contents

1. General 5
1.1 General information about this application description 5
1.2 ETS Programming software 5
1.2.1 ETS Application designation \mathbf{S} 5
1.3 Commissioning 6
1.3.1 Physical address 6
1.3.2 Application programme 6
1.3.3 Occurrence in the event of an error 7
2. Functional and device description 8
2.1 Device overview 8
2.2 Functional description 9
2.2.1 Operating concept 9
2.2.2 Range of functions 11
2.3 Functional overview 13
3. General, "Parameters" 15
3.1 Blocking function 17
3.2 Parameter „Using mode" 18
3.3 Configuration second operating level 19
3.4 Alarm 21
3.5 "LED management" parameters 22
3.5.1 General 22
3.5.2 Direction LED ON/OFF 22
3.5.3 Status LED 23
3.6 Select brightness value 26
4. "Independent push-button"/"rocker" configuration 27
4.1 General information 27
4.1.1 Individual push-button using mode 27
4.1.2 Rocker using mode 30
4.2 "Toggle switch" function 33
4.3 "ON/OFF" function 34
4.4 "Dimming" Function 35
4.5 "Shutter/blind" function 38
4.5.1 HAGER operating concept 39
4.5.2 "Short - Long - Short" operating concept 40
4.5.3 "Long - Short" operating concept 42
4.5.4 "Short - Long" operating concept 44
4.5.5 "Long - Short or Short" operating concept 46
KNX application description1-fold multifunctional push-button; 2-fold multifunctional push-button3-fold multifunctional push-button; 4-fold multifunctional push-button
4.6 "Timer" function 49
4.7 "Value 1 byte" function 50
4.8 "Value 2 bytes" function 52
4.9 Function "Room thermostat extension unit 53
4.10 "Priority" function 57
4.11 "Scene" function 59
4.12"2-channel mode" function 62
4.13"Step switch" function" 67
4.13.1 Behaviour during rocker operation 70
4.14 "Deactivate automatic functions" function 73
5. "Temperature sensor" function parameters 74
5.1 Internal temperature sensor 74
5.2 External temperature sensor 75
6. "Information" parameter window 77
7. Communication objects 78
7.1 "General" communication objects 78
7.1.1 Blocking function 78
7.1.2 "Alarm" communication object 78
7.2 Status LED communication objects 79
7.2.1 "Direction LED ON/OFF" colour and brightness 79
7.2.2 Change of brightness value through object 79
7.2.3 "Status LED single button/rocker" communication objects 80
7.3 "Independent push-button/rocker" communication objects 81
7.3.1 Toggle switch 81
7.3.2 Switching 82
7.3.3 Dimming 83
7.3.4 Roller shutter/blind 86
7.3.5 Timer 88
7.3.6 Value 1 byte 89
7.3.7 Value 2 bytes 90
7.3.8 Thermostat extension 91
7.3.9 Priority 93
7.3.10 Scene 94
7.3.11 2-channel mode 95
7.3.12 Step switch 98
7.3.13 Deactivate automatic 99
KNX application description1-fold multifunctional push-button; 2-fold multifunctional push-button3-fold multifunctional push-button; 4-fold multifunctional push-button
7.4 "Internal temperature sensor" communication objects 100
7.5 "External temperature sensor" communication objects 100
8. Appendix 101
8.1 ETS software characteristics 101
8.2 Technical data 101
8.3 Accessories 101
8.4 Warranty 101

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

1. General

1.1 General information about this application description

This document describes the operation and parameterisation of KNX devices with the aid of the Engineering Tool Software ETS.
The devices are parameterised by the ETS and the required settings are made during the first installation.

1.2 ETS Programming software

The application programmes are compatible with ETS5 or ETS4 and are always available in their latest version on our Internet website.

ETS version	File extension of compatible products	File extension of compatible projects
ETS 4 (v 4.18 and higher)	${ }^{*}$. knxprod or *.vd5	*.knxproj
ETS 5 (v 5.04 and higher)	*.knxprod	*.knxproj

Table 1: ETS Software version

1.2.1 ETS Application designation

Application	Article order number
S801xxxxx0 V1.0	KNX multifunctional push-button 1gang
S801xxxxx0 V1.0	KNX multifunctional push-button 2gang
S801xxxxx0 V1.0	KNX multifunctional push-button 3gang
S801xxxxx0 V1.0	KNX multifunctional push-button 4gang

Table 2: ETS Application designations

1.3 Commissioning

The commissioning of the push-buttons primarily refers to the programming of the physical address and the application data by the ETS Engineering Tool Software.

1.3.1 Physical address

The ETS assigns the physical address. The bus application unit has a programming button for assigning the physical address; the button is also fitted with an integrated red LED as a display. The red programming LED lights up by pressing the programming button. After assignment of the physical address by the ETS, the programming LED goes out.
To check whether the bus voltage is present, press the programming button briefly, the red LED lights up. Press the button once again to exit the programming mode.

Example:

- Activate programming mode \rightarrow Actuate the programming button on the bus application unit. Programming LED flashes red.
- The ETS starts downloading the physical address.

The programming mode is automatically cancelled once the download is complete \rightarrow The programming LED is switched off.

- Label bus application unit with the physical address.
i If a device in an existing system is to be programmed, only one device can be in programming mode.

1.3.2 Application programme

The application software can be loaded on to the application unit directly when assigning the physical address, for example. If this has not taken place, it can also be programmed at a later date.
The application programme is downloaded directly on to the bus application unit and is also possible without the user module being plugged in.
i Once the application programme has downloaded, the plugged-in user module and the bus coupling unit are synchronised. This is indicated by all the status LEDs (blue) flashing.

Figure 1: Bus application unit flush-mounted
(1) Illuminated programming button

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

1.3.3 Occurrence in the event of an error

If the plugged-in user module is not compatible with the application programme loaded on the bus application unit, after synchronisation (all status LEDs flashing blue) the status LEDs flash "red". If this occurs, the device cannot function.

Solution:

- Download the corresponding application programme again
- Connect the correct user module version to the bus application unit

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

2. Functional and device description

2.1 Device overview

801413xx; 801423xx; 801433xx; 801443xx 801617xx; 801627xx; 801637xx; 801647xx; 801618xx; 801628xx

Figure 2: Device overview

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

2.2 Functional description

The 1-4-fold push-button is only functional with a flush-mounted bus application unit (8004 00 x 1). The rockers/buttons can be assigned the following functions: ON/OFF, dimming, shutter/ blind, light scene activation, value, priority and thermostat extension. The assignment of the various functions is freely selectable for each rocker/button and is defined by parameterisation in the ETS. Depending on the parameterised functions, telegrams that trigger ON/OFF, dimming, blind/shutter functions, call up or save light scenes and set dimming, brightness or temperature values in the corresponding actuators are transmitted to the KNX system bus when rockers/buttons are pressed.
The following functions are formulated for the terms "rocker" and "individual push-button(s)" for the devices listed.

2.2.1 Operating concept

The function of the individual control rockers depends on the programming of the push-button. Depending on the version, devices are fitted with up to eight pressing points. Figure 3 shows a 2 -fold push-button with a total of four pressing points. Depending on the parameterisation, the rocker can be configured to function as a "whole" or as a button with a "left and right rocker side". The difference between a rocker and button is presented and described below.

Rocker

The entire rocker (1) is designated as a rocker. Both rocker sides, the left rocker side (2) and the right rocker side (3) work together to carry out one function (e.g. shutter function: top rocker side UP, bottom rocker side DOWN).

Figure 3: "2-fold rocker - S/B/K/Q" rocker division
(1)

Figure 4: "1-fold rocker - R" rocker division

Button

The left (4) or right (5) side of the rocker are designated as a button. The respective buttons can work independently of each other (for example, left button area \rightarrow shutter no. 1 UP/DOWN and right button area \rightarrow light ON/OFF) but can also work together in a single function (see rocker example).

Figure 5: "2-fold rocker - S/B/K/Q" independent push-button division

Figure 6: "2-fold rocker - R" independent push-button division

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

Operating instructions

The device differentiates between short and long touches.

- Short touch operation

Switch lighting
Shutter/blind step operation
Operating mode changeover, etc.
Operating channel A under 2-channel mode

- Long touch operation

Dimming the lighting
Move command (move) roller shutter/blind
Saving of a scene
Operating channel B under 2-channel mode

2.2.2 Range of functions

- Button surfaces can be configured as either a rocker or as independent buttons.
- Each rocker or independent button can be used for the following functions: ON/OFF, dimming, shutter/blind control, 1-byte value transmitter, 2-byte value transmitter, scene extension, 2-channel operation, room temperature control and thermostat extension.
- 2-channel operation: The operation can be set for each button by two independent channels. Thus, a maximum of only telegrams can be transmitted to the bus by one operating procedure. The channels can be parameterised independently to the functions switching, value transmitter (1-byte, 2-byte), brightness value transmitter (2-byte) or temperature value transmitter (2-byte).
- ON/OFF function: the following settings are possible for each button: response when the rocker/button is pressed and/or released, switching on, switching off, not active.
- The following adjustments are possible when dimming: times for short and long touches, dimming in different steps, transmitting a stop telegram at the end of the touch, transmitting dimming values.
- The following adjustments are possible during blind control: up/down, position (slat position / shutter/blind position), safety run
- The following settings are possible in the 1-byte and 2-byte value transmitter function: selection of the value range ($0-100 \%, 0-255,0-65535,0-1500 \mathrm{Lux}, 0-40^{\circ} \mathrm{C}$), value when pressed.
- The following setting are possible in the scene function: call-up of a scene number (1-64), saving upon long key-press and emission time delay.
- When the button is being used as a control extension, the following adjustments are possible: defined selection of an operating mode, presence state change-over, heating/ cooling change-over.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

- Each button has an RGB status LED.
- The following settings are available for the activation of the status LED: permanently ON/OFF, actuation display regarding button function, separate communication object (permanent/flashing and inverted), comparison value for signed and unsigned 1-byte and 2-byte values.
- The direction LED can be activated by a communication object so that it is either on or off permanently, or blinking.
ii LED colours may differ slightly from product to product (push-button to pushbutton).
- Lock-up must be configured in the general parameter settings. Lock-up can then be activated or deactivated on an individual basis for each button or rocker.
- When using the room temperature measurement function, the device can measure, process and transmit the room temperature to the bus by means of an external temperature sensor.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

2.3 Functional overview

The functions described in the following section enable the individual configuration of the device inputs or outputs.

Not active

The "Not active" function means that no function is assigned to the rocker/button; the rocker/ button is disabled.

Toggle switch

The "Toggle switch" function switches on the lighting upon the first key-press and switches it off again upon the second.

Switching

The "ON/OFF" function enables the push-button (lighting circuits, for example) to be switched on or off (ON, OFF, ON/OFF, for example).

Dimming

The "Dimming" function enables the push-button to increase and decrease the dimming in lighting circuits.
This function can either be used as a rocker (for example, left side of the rocker dims up, right side dims down) or as a button (first key-press dims up, second dims down (during toggle mode)).

Roller shutter/blind

The "Shutter/blind" function allows blinds, shutters, awnings or similar hangings to be opened and closed.
This function can either be used as a rocker (for example, left side of the rocker OPENS blind, left side CLOSES blind) or as a button (first key-press OPENS blind, second CLOSES blind (during toggle mode)).

Timer (only in the "independent push-button" using mode)

The "Timer" function enables the actuator output to be switched on or off for an adjustable duration. The switching time can be interrupted before the delay time elapses. An adjustable switch-off warning signals the end of the delay time by inverting the output state for 1 s .

Value 1 byte/2 bytes

The value transmitter (1 byte) function allows values from 0 to 255 or 0 to 100% to be transmitted to a dim actuator, for example.
The value transmitter (2 bytes) function allows values from 0 to 65535 , brightness values from 0 to 1000 lx or temperature values from 0 to $40^{\circ} \mathrm{C}$ to be configured.

Thermostat extension

When being used as a control extension, the following parameter settings can be set/selected for each button or rocker. Override setpoint to a defined operating mode, setpoint selection, heating/cooling changeover and presence detection.

Priority

The "Priority" function enables a precisely defined state (2 bits) to be specified or enables the function to impose a defined state.

Scene

When functioning as a scene extension, a light scene can be called up in a KNX device.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

2-channel mode

The "2-channel mode" function allows different functions to be configured for two different communication objects (channel A, channel B) using the same button in a time-dependent manner.

Step switch

The "Stepping switch" function (1 byte) allows step values from 0 to 255 , percentage values from 0 to 100% and scenes 1 to 64 to be selected and switched for up to 7 levels.

Deactivate automatic

This function can be used to interrupt and deactivate ongoing operations (time-controlled lighting).
i This function must be configured in our TXA... and TYA... actuators.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

3. General, "Parameters"

The following sections describe the configuration of the parameters for 1 to 4 -fold pushbutton devices. The function of the different devices only differ in the number of channels/ buttons. For this reason, only the first channel or first button/button pair (rocker) are ever described.

Global parameter settings for the entire device (i.e. for all buttons/rockers/channels) are made under "General".
i ETS Engineering Tool Software (version ETS4.x / ETS5.x) is used for parameterisation and commissioning.

Figure 7: General, "Parameters"
i The device used and the choice of push-button version must match; i.e. if the selected push-button version is incorrect, the application software cannot be uploaded to the device.

Parameters	Description	Value
Operating concept	This parameter determines the device push-button version.	1-fold push-button* 2-fold push-button 3 -fold push-button 4-fold push-button
Time for long key-press (TD) (dimming, shutter/blind)	This parameter defines the moment from when a long pushbutton action is detected. This distinction is required in the "Dimming" function, for example, to switch on (short TD) or dim (long TD) the lighting.	400 ms - 500 ms *- 1 s
Time for long key-press (TD) (2-channel mode)	This parameter defines the moment from when a long keypress is detected for the 2-channel mode.	$500 \mathrm{~ms}-5 \mathrm{~s}^{*}-10 \mathrm{~s}$
Antitheft alarm	When the device is disconnected from the flush-mounted bus application unit, an alarm can be transmitted via the "Antitheft alarm" object in the form of an ON/ OFF telegram or a value telegram.	Not active * 1 bit 1 byte

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

	When "Antitheft alarm 1 bit" is selected, a 1-bit value (0 or 1) is transmitted when device is disconnected.	$\mathbf{O N = 1 ^ { * }}$ $\mathbf{O N}=0$
Antitheft alarm 1 bit ${ }^{1}$	When "Antitheft alarm 1 byte" is selected, a 1-byte value is transmitted when the device is disconnected.	$\mathbf{0}^{*} \ldots 255$
Periodical emission of antitheft alarm 3	This parameter allows the periodical emission time of the antitheft alarm to be set.	1 min $\ldots 5$ min *- 30 min

Table 3: General, "Parameters"

Nr.	Name	Object function	Length	Data type
0	General	Antitheft alarm	1 bits	1.005 DPT_ON/OFF
1	General	Antitheft alarm	1 byte	5.010 DPT_Counting pulse (0-255) 2

${ }^{1}$ This function parameter and the associated communication objects are only visible when the 1 bit parameter in "Antitheft alarm" is selected.
${ }^{2}$ This function parameter and the associated communication objects are only visible when the 1 byte parameter in "Antitheft alarm" is selected.Default value.
${ }^{3}$ This function parameter is visible when either the parameter 1 bit or 1 byte is selected under "Antitheft alarm".

[^0]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

3.1 Blocking function

In the following parameter window, the respective functions and selection options of the "Lockup" function are displayed and configured for the "rocker" and "button" using modes.

Figure 8: General "Lock-up"

Parameters	Description	Value
Polarity of lock-up object	This parameter defines at what value the blocking function is activated.	ON = 1* ON =
Function of LED lock-up	This parameter sets the function of the LED when lock-up is active.	Off * On Blinking
Colour of LED ${ }^{1}$		Off Red * Green Blue Red + green Red + blue Blue + green

Table 4: General "Lock-up"

Nr.	Name	Object function	Length	Data type
4	General	Blocking function	1 bits	1.011 DPT_Status

${ }^{1}$ This parameter is only visible when either "On" or "Blinking" is selected under "Function of LED lock-up".
The device has a lock-up function that can be used to lock independent buttons or rockers. To activate the lock-up function for each button/rocker, the "Lock-up" function must be explicitly activated (ticked) in the "Function" parameter branch for each button/rocker.
After bus voltage recovery, a lock-up remains active if it was activated before the bus voltage failed. The lock-up is always deactivated after a programming process by the ETS.
The polarity of the lock-up object can be parameterised.
If the polarity of the lock-up object is set to "Inverted $(\mathrm{ON}=0)$ ", the push-button is not immediately locked in the event of bus voltage recovery or after a download if no lock-up was switched on before the bus voltage failed. In such cases, the lock-up is only activated in the event of an object update (value $=$ " 0 ") for the lock-up object!

[^1]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

3.2 Parameter „Using mode"

In the following parameter window, the type of the using mode of the button pairs is set and parameterised.

General Parameters Lock-up	Push-button 1-2	Push-button 3-4
Using mode	Independent push-buttons	
Alarm		
LED management		
Push-button 1		
Push-button 2		
Push-button 3		
Push-button 4		
Push-button 5		

Figure 9: Parameter „Using mode"

The distinction between the "independent push-button" or "rocker" using mode must be made for the button pairs.
The button pair can be operated in the "independent push-button" function; i.e. each individual independent button can be assigned an individual function (for example, left side of the rocker (button 1) for light ON/OFF, right side of the rocker (button 2) for blind UP/DOWN).
The button pair can also be operated in the "rocker" function; i.e. the rocker pair work together to carry out a joint function (for example, left rocker side for light ON, right rocker side for light OFF).

Parameters	Description	Value
Push-button 1-2	This parameter can be used to configure the function of the buttons/rocker.	Independent push-buttons * Rocker
Push-button 3-4	This parameter can be used to configure the function of the buttons/rocker.	Independent push-buttons * Rocker
Push-button 5-6	This parameter can be used to configure the function of the buttons/rocker.	Independent push-buttons * Rocker
Push-button 7-8	This parameter can be used to configure the function of the buttons/rocker.	Independent push-buttons * Rocker

Table 5: Parameter „Using mode"

[^2]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

3.3 Configuration second operating level

A second operating level can also be created for the device under "Using mode" (Figure 9, tick box 1).

Parameters	Description	Value
Behaviour button 1	This parameter assigns the behaviour of push-button x from operating level 1 to push-button 1 in operating level 2.	Not active * ...as push-button 1 ...as push-button 2 ...as push-button X
Behaviour button 2	This parameter can be used to configure the function of the buttons.	Not active * ...as push-button 1 ...as push-button 2 ...as push-button X
Behaviour button 3	This parameter can be used to configure the function of the buttons.	Not active * ...as push-button 1 ...as push-button 2 ...as push-button X
Behaviour button X	This parameter can be used to configure the function of the buttons.	Not active * ...as push-button 1 ...as push-button 2 ...as push-button X

Table 6: "Configuration second level" parameter

Operating level 1 relates to the individual function selection within the independent button or rocker parameters. In operating level 2 , the selected button is assigned a function from the functions of the buttons in operating level 1.

[^3]
Operating level 1

■ One function per button from: ON/OFF / toggle switch, dimming, blind, priority, value transmitter/light scene extension, controller

E.g. 4-fold

Operating level 2

- Left button row $\Rightarrow 4$ buttons with the same function
- Right button row $\Rightarrow 4$ buttons with the same function
- Function can be selected from functions of operating level 1

E.g. 4-fold

i. The assignment of the functions in the second operating level is only active when the parameter "Independent push-button" is selected under "Using mode".
(i) It is advisable to only assign one shared function from the functions in operating level 1 to the buttons in the second operating level.

A separate object "Configuration second operating level" changes over the operating level.

Nr.	Name	Object function	Length	Data type
2	General	Configuration second level	1 bits	1.011 DPT_Status

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

3.4 Alarm

The device has its own communication object which can be used to signal alarm messages (1 bit).
Alarms are signalled by the simultaneous activation of all status LEDs and the direction LED at a frequency of approx. 2 Hz . The LED colour can be set separately for alarm signalling.

Figure 10: Alarm
$\left.\begin{array}{l|l|l}\text { Parameters } & \text { Description } & \text { Value } \\ \hline \text { Alarm } & \begin{array}{l}\text { This parameter activates/ } \\ \text { deactivates the "Alarm" function. }\end{array} & \begin{array}{l}\text { Not active * } \\ \text { Active } \\ \text { Active/acknowledgement by press }{ }^{1}\end{array} \\ \hline \text { Alarm polarity } & \begin{array}{l}\text { This parameter defines at which } \\ \text { input level 0/1 the alarm message } \\ \text { is to be switched on. }\end{array} & \begin{array}{l}\text { ON = 1* } \\ \text { ON = }\end{array} \\ \hline \text { Alarm colour } & & \begin{array}{l}\text { Off } \\ \text { Red }\end{array} \\ \text { Green } \\ \text { Blue * } \\ \text { Red + green } \\ \text { Red + blue } \\ \text { Blue + green }\end{array}\right]$

Table 7: Alarm

No.	Name	Object function	Length	Data type
3	General	Alarm	1 bits	1.005 DPT_Alarm

${ }^{1}$ If the "Alarm" parameter is set to the value "Active/Acknowledgement by press", the alarm message can be acknowledged and shut off by pressing the button.

[^4]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

3.5 "LED management" parameters

3.5.1 General

LED management is configured and described in the following parameter window.

Figure 11: LED management, "General"
In order to make the settings for LED management, the tick box (Figure 11, 1) must be activated. The brightness value for both the status LED and the direction LED can also be changed separately for day and night using separate communication objects (Figure 11, 2). When "LED management" is activated, another a parameter for configuring the status LED opens.
i LED colours may differ slightly from product to product (push-button to push-button).

3.5.2 Direction LED ON/OFF

Figure 12: LED management, "Direction LED ON/OFF"

Parameters	Description	Value
Function of direction LED	This parameter sets the function of the direction LED.	Always OFF * Always ON Status indication (ON = 1) Status indication (ON = 0) Status indication blinking by 1 Status indication blinking by 0
Brightness value for day (0-100 \%)	The slidebar for this parameter can be used to set the brightness value for daytime operation.	$0 \ldots 100 \% *$
Brightness value for night $(0-100 \%)$	The sliding bar for this parameter can be used to set the brightness value for nighttime operation.	$0 \ldots \mathbf{2 0 \% *} \ldots 100 \%$

Table 8: LED management, "Status LED"

[^5]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Nr.	Name	Object function	Length	Data type
5	LED management	Day/Night	1 bits	
6	LED management	Device LED ON/OFF	1 bits	1.001 DPT_ON/OFF
7	LED management	Direction LED - status indication	1 bits	1.001 DPT_ON/OFF
8	LED management	Direction LED - dimming value day	1 byte	5.001 DPT_Percentage (0-100 \%)
9	LED management	Status LED - brightness day Direction LED - dimming value night	1 byte	5.001 DPT_Percentage (0-100 \%)
11	LED management	Status LED - brightness night	1 byte	5.001 DPT_Percentage (0-100 \%)

3.5.3 Status LED

Each rocker is fitted with two RGB status LEDs that can be connected internally to the operating function depending on the function of the rocker or buttons. It is also possible to signal completely independent display information.
A distinction is made between "Individual" and "Global" during the parameterisation of the status LEDs. In the "Global" variant, the colour configuration is set centrally for all status LEDs in the "Status LED / Status LED management" tab.
In the "Individual" variant, however, all status LED settings must be configured directly in the respective button/rocker parameters as usual.

Figure 13: LED management, "Individual"

Parameters	Description	Value
Duration to acknowledge key-press	This parameter sets the function of the direction LED.	0.5 s ... 3 s *- 5 s
Status LED colour concept	This parameter determines whether the colour concept for the status LEDs is to be set individually for each button/rocker or globally.	Global Individual *
Flashing duration	This parameter defines the blinking duration of the status LED.	250 ms - 2 s *- 5 s
Brightness value for day (0-100 \%)	The slidebar for this parameter can be used to set the brightness value for daytime operation.	0 ... 100 \%*
Brightness value for night (0-100 \%)	The sliding bar for this parameter can be used to set the brightness value for nighttime operation.	0 ... 20 \%* ... 100 \%

Table 9: LED management, "Individual"

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

If the value in the "Status LED colour concept" parameter is set to "Global", a defined colour can be assigned to the function types (ON, OFF, comfort, standby, night setpoint, frost/heat protection). Note that in doing so, colours for independent buttons/rockers can no longer be selected.

Figure 14: LED management, "Global"

Parameters	Description	Value
LED colour for ON	This parameter allows the status LED colour for the "ON" function to be set.	Off Red Green * Blue Red + green Red + blue Green + blue
LED colour for OFF	This parameter allows the status LED colour for the "OFF" function to be set.	Off Red * Green Blue Red + green Red + blue Green + blue
LED colour for comfort	This parameter allows the status LED colour for the "Comfort" function to be set.	Off Red * Green Blue Red + green Red + blue Green + blue
LED colour for standby	This parameter allows the status LED colour for the "Standby" function to be set.	Off * Red Green Blue Red + green Red + blue Green + blue
LED colour for night setpoint	This parameter allows the status LED colour for the "Night setpoint" function to be set.	Off Red Green * Blue Red + green Red + blue Green + blue

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

	This parameter allows the status LED colour for the "Frost/heat protection" function to be set.	Off Red Green
Llue ${ }^{*}$		
		Red + green Red + blue Green + blue

Table 10: LED management, "Global"

[^6]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

3.6 Select brightness value

The LEDs and the direction LED can be dimmed separately. There are two ways of performing this action:

Via KNX command

There are two data points (status LED - brightness day/status LED - brightness night (9/11) and direction LED dimming value day/direction LED dimming value night ($8 / 10$). The current brightness of the selected dimmer group can be changed at each data point. The most recently selected brightness value is used after the device is restarted.

Via the local control

Enter the brightness mode b pressing buttons 1 and 2 simultaneously for 5 seconds. The mode is active when all device LEDs flash. In active brightness mode, press button 1 to decrease the brightness and button 2 to increase the brightness.

- Press button 1 (Figure 15, 1) and button 2 (Figure 15, 2) simultaneously for 5 seconds. All device LEDs flash.
■ Press button 1 (Figure 15, 1).
All LEDs in the device are dimmed by 10% every time the button is pressed, down to the same brightness value.
Or:
- Press button 2 (Figure 15, 2).

All LEDs in the device are brightened by 10% every time the button is pressed, up to the same brightness value.
(1)

Figure 15: Push-button 4gang

This function applies to the entire device (both dimmer groups).

When the brightness values are different, the brightness increases/decreases simultaneously for both groups until one group reaches a limit (10\% or 100\%). The most recently selected brightness value is used after the device is restarted.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4. "Independent push-button"/"rocker" configuration

4.1 General information

This chapter describes the "rocker/independent push-button" configuration. Only the first rocker or the first pair of independent push-buttons are described. Additional rockers/independent push-buttons must be configured accordingly.
i The "Timer" function is only available in the "independent push-button" using mode.
i Depending of the status LED configuration (individual/global), the status LED colour must be set in the rocker/individual push-button parameters.

4.1.1 Individual push-button using mode

Figure 16: Function type of the independent push-button(s)

Parameters	Description	Value
Function of the independent pushbutton	This parameter defines the function type of the independent push-button(s).	Not active * Toggle switch ON/OFF Dimming Shutter/blind Timer ${ }^{1}$ Value 1 byte Value 2 bytes Thermostat extension Priority Scene Automatic control deactivation
LED status	This parameter defines the status LED function.	Always OFF * Always ON ${ }^{2}$ Acknowledgement ${ }^{3}$ Status indication ${ }^{4}$ Control through separately object Comparator unsigned Comparator signed
LED colour for ON ${ }^{2 ; 3}$	This parameter sets the status LED colour for "Always ON" or "Acknowledgement".	Off Red Green * Blue Red + green Red + blue Green + blue

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

LED colour for OFF ${ }^{3}$	This parameter sets the status LED colour for "Acknowledgement".	Off Red * Green Blue Red + green Red + blue Green + blue
LED behaviour ${ }^{4}$	This parameter sets the status LED behaviour when "Status display" is selected.	Status display ($\mathrm{ON}=1$) * Status display ($\mathrm{ON}=0$) Status display blinking ($\mathrm{ON}=1$) Status display blinking ($\mathrm{ON}=0$)
LED colour (over setpoint) ${ }^{56}$	This parameter sets the status LED colour for "Comparison value over setpoint".	Off Red * Green Blue Red + green Red + blue Green + blue
LED colour (equal setpoint) ${ }^{56}$	This parameter sets the status LED colour for "Comparison value equal to setpoint".	Off Red Green * Blue Red + green Red + blue Green + blue
LED colour (under setpoint) ${ }^{56}$	This parameter sets the status LED colour for "Comparison value under setpoint".	Off Red Green Blue * Red + green Red + blue Green + blue
Comparison function ${ }^{5}$ (unsigned)	This parameter sets which value, 1 byte or 2 bytes, is to be compared in the compare function.	Comparison of 2 bytes unsigned * Comparison of 1 byte unsigned
Comparison setpoint of 2 bytes unsigned ${ }^{5}$	This parameter sets the 2-byte comparison setpoint.	0 * ... 655535
Comparison setpoint of 1 byte unsigned ${ }^{5}$	This parameter sets the 1-byte comparison setpoint.	0 * ... 255
Comparison function (signed) ${ }^{6}$	This parameter sets which value, 1 byte or 2 bytes, is to be compared in the compare function.	Comparison of 2 bytes signed * Comparison of 1 byte signed
Comparison setpoint of 2 bytes signed ${ }^{6}$	This parameter sets the 2-byte comparison setpoint.	-32768 ... 0 * ... 32767
Comparison setpoint of 1 byte signed ${ }^{6}$	This parameter sets the 1-byte comparison setpoint.	-128 ... 0 * ... 127

Table 11: "Button function type" parameters

* Default value

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
${ }^{1}$ The "Timer" function is only available in the "independent push-button" using mode.
${ }^{2}$ This parameter is only visible when the "Always ON" function is selected under "LED status".
${ }^{3}$ These parameters are only visible when the "Acknowledgement" function is selected under "LED status".
${ }^{4}$ This parameter is only visible when either the "Status indication" or "Control through separately object" function is selected under "LED status".
5 This parameter is only visible when the "Comparator unsigned" function is selected under "LED status".
6 This parameter is only visible when the "Comparator signed" function is selected under "LED status".
i The lock-up function can be activated for the respective independent push-button or rocker (tick box) (Figure 16,1).

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.1.2 Rocker using mode

D General	Function		
D LED management		ON/OFF	
D Rocker 1-2	Function by press left	ON	\checkmark
4 Rocker 3-4			
Function	Emission time delay by press	Immediate emission	\checkmark
Status LED			
D Rocker 5-6	Function by press right	OFF	\checkmark
D Internal temperature sensor D Information	Emission time delay by press	Immediate emission	\checkmark
	Lock-up	回	

Figure 17: Function type of the rocker(s)

Parameters	Description	Value
Function	This parameter defines the function type of the rocker(s).	Not active * Toggle switch ON/OFF Dimming Shutter/blind Value 1 byte Value 2 bytes Thermostat extension Priority Scene Automatic control deactivation
Function by press left/top	This parameter defines the value when the left rocker is pressed.	Not active OFF ON *
Emission time delay by press	This parameter allows the transmission display when the right rocker is pressed to be set; i.e. when to transmit the "rocker pressed" signal to the bus can be set.	Immediate emission * $1 \mathrm{~s}-5 \mathrm{~min}$
Function by press right/bottom	This parameter defines the value when the right rocker is pressed.	Not active OFF ON *
Emission time delay by press	This parameter allows the transmission display when the right rocker is pressed to be set; i.e. when to transmit the "rocker pressed" signal to the bus can be set.	Immediate emission * $1 \mathrm{~s}-5 \mathrm{~min}$

Table 12: "Rocker function type" parameters

[^7]1-fold multifunctional push-button; 2-fold multifunctional push-button

Figure 18: Status LED of the rocker(s)

Parameters	Description	Value
Function of LED status left/top Function of LED status right/bottom	This parameter defines the status LED function.	Always OFF * Always ON ${ }^{1}$ Acknowledgement ${ }^{2}$ Status indication ${ }^{3}$
LED colour for ON ${ }^{23}$	This parameter sets the status LED colour for "Always ON" or "Acknowledgement".	Off Red Green * Blue Red + green Red + blue Green + blue
LED colour for OFF ${ }^{3}$	This parameter sets the status LED colour for "Always OFF" or "Acknowledgement".	Off Red * Green Blue Red + green Red + blue Green + blue
LED behaviour ${ }^{4}$	This parameter sets the status LED behaviour when "Status display" is selected.	Status display (ON =1) * Status display ($\mathrm{ON}=0$) Status display blinking $(\mathrm{ON}=1)$ Status display blinking ($\mathrm{ON}=0$)
LED colour (over setpoint) ${ }^{56}$	This parameter sets the status LED colour for "Comparison value over setpoint".	Off Red * Green Blue Red + green Red + blue Green + blue
LED colour (equal setpoint) ${ }^{56}$	This parameter sets the status LED colour for "Comparison value equal to setpoint".	Off Red Green * Blue Red + green Red + blue Green + blue
LED colour (under setpoint) ${ }^{56}$	This parameter sets the status LED colour for "Comparison value under setpoint".	Off Red Green Blue * Red + green Red + blue Green + blue
Comparison function ${ }^{5}$ (unsigned)	This parameter sets which value, 1 byte or 2 bytes, is to be compared in the compare function.	Comparison of 2 bytes unsigned * Comparison of 1 byte unsigned
Comparison setpoint of 2 bytes unsigned ${ }^{5}$	This parameter sets the 2-byte comparison setpoint.	0 * ... 655535
Comparison setpoint of 1 byte unsigned ${ }^{5}$	This parameter sets the 1-byte comparison setpoint.	0 * ... 255

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

Comparison function $(\text { signed })^{6}$	This parameter sets which value, 1 byte or 2 bytes, is to be compared in the compare function.	Comparison of 2 bytes signed * Comparison of 1 byte signed
Comparison setpoint of 2 bytes signed	This parameter sets the 2-byte comparison setpoint.	$-32768 \ldots 0^{*} \ldots 32767$
Comparison setpoint of 1 byte $_{\text {signed }}{ }^{6}$	This parameter sets the 1-byte comparison setpoint.	$-128 \ldots 0^{*} \ldots 127$

Table 13: "Status LED" parameters of the rocker(s)
${ }^{2}$ This parameter is only visible when the "Always ON" function is selected under "LED status".
${ }^{3}$ These parameters are only visible when the "Acknowledgement" function is selected under "LED status".
${ }^{4}$ This parameter is only visible when either the "Status indication" or "Control through separately object" function is selected under "LED status".
5 This parameter is only visible when the "Comparator unsigned" function is selected under "LED status".
6 This parameter is only visible when the "Comparator signed" function is selected under "LED status".
i The lock-up function can be activated for the respective independent push-button or rocker (tick box) (Figure 16,1).

[^8]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.2 "Toggle switch" function

The "Toggle switch" function for the independent push-button or rocker using mode is configured in the parameter windows below (Figure 19).
The "Toggle switch" function means changing over. When the "Toggle switch" function is active, pressing the same independent push-button/rocker side triggers an alternate switching command.

Figure 19: "Toggle switch" function of the push-button(s)

When the "Toggle switch" function is active in the rocker using mode, pressing the left or right rocker side triggers a switching command.
"Toggle switch" function communication objects (rocker)

Nr.	Name	Object function	Length	Data type
13,53, 93,133	Rocker $x-y$	ON/OFF status indication	1 bits	1.001 DPT_ON/OFF
18,58, 98,138	Rocker $x-y$	Switching	1 bits	1.001 DPT_ON/OFF

"Toggle switch" function communication objects (button)

Nr.	Name	Object function	Length	Data type
13,33,				
53,73,	Button x	ON/OFF status	1 bits	1.001 DPT_ON/OFF
93,113,				
133.153				
18,38,		Switching	1 bits	1.001 DPT_ON/OFF
58,78,	Button x			
98.118				

"Toggle switch" function - time limited

This function is only available in the "independent push-button" operating mode.
Pressing the button quickly changes the output state. The state changes each time a short key-press occurs. If the button is not pressed, the output is switched off after the time set in the output. Pressing the button for a long time retriggers the switch-off time.
Details: when a short key-press occurs, the push-button transmits the reversal of the last command received on the status object via the on pulse object. When the button is pressed for a long time, the push-button transmits an ON command via the on pulse object.
An ON command on the on pulse object in our TXA products switches on the output for the time set.
An OFF command on the on pulse object switches off the output. If an ON command follows even though the output is still switched on, the switch-on time is restarted (retriggered).

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.3 "ON/OFF" function

The different function variants of the "ON/OFF" function for the independent button (Figure 20) and rocker pair are presented and described in the parameter window below.

Figure 20: "Function by press/on release" parameters
The independent button can trigger different responses for the two actuation functions PRESS/ RELEASE.

Parameters	Description	Value
Function when rocker is pressed left/right (rocker configuration)	This parameter defines the function of the rocker.	Not active * ON OFF
Function by press/on release (individual push-button configuration)	This parameter defines the function of the button.	Not active * ON OFF
Emission time delay by press/on release	This parameter defines when the button command is to be transmitted to the bus.	Immediate emission * $1 \mathrm{~s}-5$ min

Table 14: "Function by press/on release" ON/OFF parameters
"ON/OFF" function communication objects (rocker)

Nr.	Name	Object function	Length	Data type
18,58, 98,138	Rocker $x-y$	Switching	1 bits	1.001 DPT_ON/OFF

"ON/OFF" function communication objects (button)

Nr.	Name	Object function	Length	Data type
18,38,				
58,78,	Button x	Switching	1 bits	1.001 DPT_ON/OFF
98.118				
138.158				

[^9]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

4.4 "Dimming" Function

The "Dimming" function is described below. The lighting can be switched on/off (short press of button) and dimmed brighter, darker (long press of button) with the "Dimming" function.
One-push-button and two-push-button operation in the dimming function. When the operating surface is set as a rocker, two-push-button operation is preset for the dimming function. For example, this means that in the event of a short press, the push-button transmits a telegram to switch on and, in the event of a long press, a telegram to dim upward ("Increase"). In line with this, in the event of a short press, the push-button transmits a telegram to switch off and, in the event of a long press, a telegram to dim down ("Decrease"). When the operating surface is used as a button, the one-push-button dimming function is preset. Each time a short press of the respective button occurs, the push-button transmits alternate switch-on and switch-off telegrams ("Toggle switch"). In the event of long presses, the push-button transmits the telegrams "Increase" and "Decrease" on an alternate basis. The "Command when button is pressed" and "Command when rocker is pressed" parameters on the parameter pages for the buttons or rockers define the one-push-button or two-push-button dimming principle. For the rocker or button function, the command when the rocker or button is pressed can be set as desired.

Figure 21: "Dimming" Function

Parameters	Description	Value
Function of the "Dimming" rocker	With this parameter the following function is assigned to the rocker in the "Dimming" function. A distinction is made here between the function when pressing the rocker left/right.	Increase (ON) * Decrease (OFF) Increase (toggle switch) Decrease (toggle switch) Increase/Decrease (toggle switch) Dimming value
Function of the independent push- button "Dimming"	With this parameter the following function is assigned to the button in the "Dimming" function when pressing the button.	Increase (ON) * Decrease (OFF) Increase (toggle switch) Decrease (toggle switch) Increase/Decrease (toggle switch) Dimming value

Table 15: Rocker/button "Dimming" function
"Dimming (Increase/Decrease)" function communication objects (rocker)

Nr.	Name	Object function	Length	Data type
18,58, 98,138	Rocker x-y	Switching	1 bits	1.001 DPT_ON/OFF
21,61, 101.141	Rocker x-y	Dimming	4 bits	3.007 DPT_Dimmer step

[^10]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
"Dimming (Increase/Decrease)" function communication objects (button)

Nr.	Name	Object function	Length	Data type
18,38,				
58,78,	Button x	Switching		
98.118		bits	1.001 DPT_ON/OFF	
138.158		Dimming	4 bits	3.007 DPT_Dimmer step
21,41,				
61,81	Button x			
101.121				

"Dimming (Increase/Decrease toggle switch)" function communication objects (rocker)

Nr.	Name	Object function	Length	Data type
13,53, 93,133	Rocker $x-y$	ON/OFF status indication	1 bits	1.001 DPT_ON/OFF
18,58, 98,138	Rocker $x-y$	Switching	1 bits	1.001 DPT_ON/OFF
21,61, 101.141	Rocker $x-y$	Dimming	4 bits	3.007 DPT_Dimmer step

"Dimming (Increase/Decrease toggle switch)" function communication objects (button)

Nr.	Name	Object function	Length	Data type
13,33,				
53.73,	ON/OFF status			
93,113,	Button x	1 bits	1.001 DPT_ON/OFF	
133.153		Switching	1 bits	1.001 DPT_ON/OFF
18,38,		Dimming		
58,78,	Button x		4 bits	3.007 DPT_Dimmer step
98.118				
138.158				
61,81		Button x		
101.121				
141.161				

In addition to the dimming communication objects, the ON/OFF communication objects are also visible. Two separate group addresses for ON/OFF and dimming must be created and connected with the corresponding communication objects.
If the "Dimming - dimming value" function is selected, the dimming value is to be set by means of the slidebar ($0 \% \ldots 100 \%$). Only one communication object can be selected in this function. The "Dimming - dimming value" function assigns a specific brightness value to the lamp via the connected actuator. The scene values are primarily only set in the actuator. Scenes can only be called up or adjusted on the push-button.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker
"Dimming value" function communication objects (rocker)

Nr.	Name	Object function	Length	Data type
22,62,	Rocker $x-y$	Dimming value	1 byte	5.001 DPT_Percentage $(0-100 \%)$
102.142				

"Dimming value" function communication objects (button)

Nr.	Name	Object function	Length	Data type
22,42,				
62,82	Button x	Dimming value	1 byte	5.001 DPT_Percentage (0-100 \%)
102.122				
142.162				

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.5 "Shutter/blind" function

The "Shutter/blind" function for the button and rocker using modes are configured in the parameter windows below.
This function switches shutters, blinds, awnings and other hangings. In the "Shutter/blind" function, a distinction is made between long and short key-presses.
\rightarrow Short key-press: the device transmits a step or stop command to the bus via the Slat Step/Stop (step) communication object.
\rightarrow Long key-press: The device transmits a motion command (Up/Down) to the bus via the Up/Down (move) communication object.

D	General
D	LED management
4	Push-button 1
	Function
D	Push-button 2
D	Rocker 3-4
D	Rocker 5-6
Intamsl tammarstione camenr	

```
Function
Using mode
Sun protection type
Shutter function
```


Figure 22: "Shutter/blind" function

In the rocker using mode, the "Shutter/blind" function can be set so that the left rocker side raises the shutter and the right side lowers it. The rocker sides work as part of the same function (they function in the same way as 2 shutter/blind buttons). Two communication objects (Rocker x-y Slat Step/Stop (step) and rocker x-y Up/Down (move)) are displayed for the respective function version.

Operating concepts for the roller shutter / blind function

Five different operating concepts are available in the application for activating roller shutters, blinds or similar hangings. In these operating concepts, the telegrams are transmitted to the bus with a different time sequence. This allows the widest range of drive concepts to be set and operated.

Parameters	Description	Value
Using mode of the rocker(s)/ independent push-button(s)	This parameter selects the using mode of the "Shutter/blind" function	Hager/Berker behaviour * Short - Long - Short Long - Short
Short - Long		
Long - Short or Short		

Table 16: "Shutter/blind" rocker/button using mode

[^11]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.5.1 HAGER operating concept

i The "Hager using mode" has been specially adapted to the Hager blind and roller shutter actuators.

Parameters	Description	Value
Sun protection type	This parameter selects the type of the hanging	Blind * Shutter
Shutter function: When pressing the "left/right rocker side" or the "independent push-button"	In the sun protection type, this parameter selects the function of the two buttons, left/right rocker side/independent push-buttons.	Up Down Up/Down/Stop Position (0-100 \%) Secured up Secured down Secured up/down/stop
Blind function: When pressing the "left/right rocker side" or the "independent push-button"	In the sun protection type, this parameter selects the function of the two buttons, left/right rocker side/independent push-buttons.	Up Down Up/Down/Stop Position (0-100 \%) Position/Slat angle (0-100 \%) Slat angle (0-100 \%) Secured up Secured down Secured up/down/stop

Table 17: Parameters in the Hager using mode

Parameters	Description	Value
Position $(0-100 \%)^{1}$	This parameter sets a specific shutter/blind position using the slidebar.	$\mathbf{0 \% * \ldots 1 0 0 \%}$
Slat angle $(0-100 \%)^{3}$	This parameter sets the slat angle of the slat using the slidebar.	0% * ... 100%

Table 18: Blind, shutter and slat position parameters
${ }^{1}$ This parameter is only visible when the value "Position (0-100 \%)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button" parameter.
${ }^{2}$ This parameter is only visible when the value "Slat angle ($0-100 \%$)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button".

[^12]
4.5.2 "Short - Long - Short" operating concept

Figure 23: "Short - Long - Short" operating concept

As soon as the button is pressed, the device transmits a step telegram to the bus. As a result, a moving drive is stopped and the time T1 ("the time between a step and move command") is started. If the button is released again within T1, no further telegram is transmitted. This step stops an ongoing continuous move.
i The "time between a step and move command" in the device should be set shorter than the step operation of the actuator so that no disturbing buckling of the blind occurs.

If the button is kept pressed for longer than T 1 , the push-button transmits a move telegram for extending the drive after T1 has expired and the time T2 ("slat adjusting time") is started.
If the button is released within the slat adjusting time, the device transmits another short-time telegram. This function is used for the slat adjustment of a blind. As a result, the slats can be stopped at any position within their rotation. The length of the "slat adjusting time" selected should be as long as the time required by the drive to turn the slats completely. If the "slat adjusting time" selected is longer than the complete operation time of the drive, a touch function is also possible. The driver only moves if the button is pressed down.
If the button is pressed down longer than T2, the device does not transmit any further telegram. The drive continues moving until the end position is reached.
Times T1 ("time between a step and move command") and T2 ("slat adjusting time") must first be adjusted.

Parameters	Description	Value
Duration between short-long key- press T1	T1 is the time between a step and move command	$1 \ldots 4 * \ldots 3000(\times 100 \mathrm{~ms})$
Duration of the slat angle setting T2	T2 is the slat adjusting time.	$1 \ldots 5 * \ldots 3000(\times 100 \mathrm{~ms})$

Table 19: Time setting under "Short - Long - Short"

[^13]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Parameters	Description	Value
Shutter function: When pressing the "left/right rocker side" or the "independent push-button"	In the "Shutter" sun protection type, this parameter selects the function of the two buttons, left/ right rocker side/independent push-buttons.	Up * Down Position (0-100 \%)
Blind function: When pressing the "left/right rocker side" or the "independent push-button"	In the "Blind" sun protection type, this parameter selects the function of the push-buttons, left/right rocker side/independent pushbuttons.	Up * Down Position (0-100 \%) Position/slat angle (0-100 \%) Slat angle (0-100 \%)
Position (0-100 \%) ${ }^{1,2}$	This parameter allows the shutter/ blind to reach a specific position by pressing a button. The value is set using the slidebar.	0 \% * ... 100 \%
Slat angle (0-100 \%) ${ }^{\text {2, }}$	This parameter allows a specific blind slat angle to be set by pressing a button. The value is set using the slidebar.	0 \% * ... 100 \%

Table 20: Blind, shutter and slat position parameters
${ }^{1}$ This parameter is only visible when the value "Position (0-100 \%)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button" parameter.
${ }^{2}$ This parameter is only visible when the value "Slat angle (0-100 \%)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button".

[^14]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

4.5.3 "Long - Short" operating concept

Figure 24: "Long - Short" operating concept

Immediately upon pressing the button, the device transmits a long-time telegram (Move). As a result, the drive starts moving and time T1 ("slat adjusting time") is started.
If the button is released during the slat adjusting time, the device transmits a step telegram. This function is used for the slat adjustment of a blind. As a result, the slats can be stopped at any position within their rotation. The length of the "slat adjusting time" selected should be as long as the time required by the drive to turn the slats completely. If the "slat adjusting time" selected is longer than the complete operation time of the drive, a touch function is also possible. The driver only moves if the button is pressed down.
If the button is pressed down longer than T1, the device does not transmit any further telegram. The drive continues moving until the end position is reached.
Time T1 ("time between a step and move command") must first be adjusted.

Parameters	Description	Value
Duration between short-long key- press T1	T1 is the time between a step and move command	$1 \ldots 4^{*} \ldots 3000(\times 100 \mathrm{~ms})$

Table 21: Time setting under "Long - Short"

[^15]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Parameters	Description	Value
Shutter function: When pressing the "left/right rocker side" or the "independent push-button"	In the "Shutter" sun protection type, this parameter selects the function of the two buttons, left/ right rocker side/independent push-buttons.	Up * Down Position (0-100 \%)
Blind function: When pressing the "left/right rocker side" or the "independent push-button"	In the "Blind" sun protection type, this parameter selects the function of the push-buttons, left/right rocker side/independent pushbuttons.	Up * Down Position (0-100 \%) Position/slat angle (0-100 \%) Slat angle (0-100 \%)
Position (0-100 \%) ${ }^{1}$	This parameter allows the shutter/ blind to reach a specific position by pressing a button. The value is set using the slidebar.	0 \% * ... 100 \%
Slat angle (0-100 \%) ${ }^{\text {2, }}$	This parameter allows a specific blind slat angle to be set by pressing a button. The value is set using the slidebar.	0 \% * ... 100 \%

Table 22: Blind, shutter and slat position parameters
${ }^{1}$ This parameter is only visible when the value "Position (0-100 \%)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button" parameter.
${ }^{2}$ This parameter is only visible when the value "Slat angle ($0-100 \%$)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button".

[^16]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

4.5.4 "Short - Long" operating concept

Figure 25: "Short - Long" using mode

Immediately upon pressing the button, the device transmits a short-time telegram. As a result, a moving drive is stopped and the time T1 ("the time between a step and move command") is started. If the button is released again within T 1 , no further telegram is transmitted. This step stops an ongoing continuous move. The "time between a step and move command" in the push-button should be set shorter than the step operation of the actuator so that no disturbing buckling of the blind occurs.
If the button is kept pressed longer than T1, the push-button transmits a long-time telegram for extending the driver after T 1 has expired.
When the button is released, the push-button does not transmit any further telegram. The drive continues moving until the end position is reached.
Times T1 ("time between a step and move command") and T2 ("slat adjusting time") must first be adjusted.

Parameters	Description	Value
Duration between short-long key- press T1	T1 is the time between a step and move command	$1 \ldots 4^{*} \ldots 3000(\times 100 \mathrm{~ms})$

Table 23: Time setting under "Short - Long"

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Parameters	Description	Value
Shutter function: When pressing the "left/right rocker side" or the	In the "Shutter" sun protection type, this parameter selects the function of the two buttons, left/ right rocker side/independent push-buttons.	Up * Down Position (0-100 \%)
Blind function: When pressing the "left/right rocker side" or the "independent push-button"	In the "Blind" sun protection type, this parameter selects the function of the push-buttons, left/right rocker side/independent push- buttons.	Up * Down Position (0-100 \%) Position/slat angle (0-100 \%) Slat angle (0-100 \%)
Position (0-100 \%) ${ }^{1}$	This parameter allows the shutter/ blind to reach a specific position by pressing a button. The value is set using the slidebar.	0% * ... 100 \%

Table 24: Blind, shutter and slat position parameters
${ }^{1}$ This parameter is only visible when the value "Position (0-100 \%)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button" parameter.
${ }^{2}$ This parameter is only visible when the value "Slat angle ($0-100 \%$)" or "Position/slat angle ($0-100 \%$)" is selected in the "Function when pressing the rocker side/independent push-button".

[^17]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

4.5.5 "Long - Short or Short" operating concept

Figure 26: "Long - Short or Short" operating concept

As soon as the button is pressed, the device starts the time T1 ("time between a step and move command") and waits. If the button is released again before T1 expires, the device transmits a step telegram. In this way, a moving drive can be stopped. A stationary drive turns the slats by one step.
If the button remains pressed after T1 has expired, the device transmits a move telegram and starts the time T2 ("slat adjusting time").

If the button is released within T2, the device transmits a short-time telegram. This function is used for the slat adjustment of a blind. As a result, the slats can be stopped at any position within their rotation. The length of the "slat adjusting time" selected should be as long as the time required by the drive to turn the slats completely. If the "slat adjusting time" selected is longer than the complete operation time of the drive, a touch function is also possible. The driver only moves if the button is pressed down.
If the button is pressed down longer than T2, the device does not transmit any further telegram. The drive continues moving until the end position is reached.
i In this using mode, the device does not transmit a telegram as soon as a button is pressed. This makes it possible in the rocker configuration to also detect a full surface operation.
Times T1 ("time between a step and move command") and T2 ("slat adjusting time") must first be adjusted.

Parameters	Description	Value
Duration between short-long key- press T1	T1 is the time between a step and move command	$1 \ldots 4^{*} \ldots 3000(\times 100 \mathrm{~ms})$
Duration of the slat angle setting T2	T2 is the slat adjusting time	$1 \ldots 5^{*} \ldots 3000(\times 100 \mathrm{~ms})$

Table 25: Time setting under "Long - Short or Short"

[^18]1-fold multifunctional push-button; 2-fold multifunctional push-button

Parameters	Description	Value
Shutter function: When pressing the "left/right rocker side" or the "independent push-button"	In the "Shutter" sun protection type, this parameter selects the function of the two buttons, left/ right rocker side/independent push-buttons.	Up * Down Position (0-100 \%)
Blind function: When pressing the "left/right rocker side" or the "independent push-button"	In the "Blind" sun protection type, this parameter selects the function of the push-buttons, left/right rocker side/independent push- buttons.	Up * Down Position (0-100 \%) Position/slat angle (0-100 \%) Slat angle (0-100 \%)
Position (0-100 \%) ${ }^{1}$	This parameter allows the shutter/ blind to reach a specific position by pressing a button. The value is set using the slidebar.	0% * ... 100 \%

Table 26: Blind, shutter and slat position parameters
${ }^{1}$ This parameter is only visible when the value "Position (0-100 \%)" or "Position/slat angle (0-100 \%)" is selected in the "Function when pressing the rocker side/independent push-button" parameter.
${ }^{2}$ This parameter is only visible when the value "Slat angle ($0-100 \%$)" or "Position/slat angle ($0-100 \%$)" is selected in the "Function when pressing the rocker side/independent push-button".
"Up/Down" communication objects for shutter/blind operation (rocker)

Nr.	Name	Object function	Length	Data type
18,58, 98.138	Rocker $x-y$	Up/Down	1 bits	1.008 DPT_Up/Down
19,59, 99.139	Rocker $x-y$	Slat Step/Stop (step)	1 bits	1.007 DPT_Step

"Position (0-100 \%)" communication objects for shutter/blind operation (rocker)

Nr.	Name	Object function	Length	Data type
22.62, 102.142	Rocker $x-y$	Position in \%	1 byte	5.001 DPT_Percentage $(0-100 \%)$

Communication objects "Position/slat angle (0..100\%)" for shutter/blind operation (rocker)

Nr.	Name	Object function	Length	Data type
22.62, 102.142	Rocker $x-y$	Position in \%	1 byte	5.001 DPT_Percentage (0-100 \%)
23,63, 103.143	Rocker $x-y$	Slat angle in \%	1 byte	5.001 DPT_Percentage $(0-100 \%)$

"Slat angle (0-100 \%)" communication objects for shutter/blind operation (rocker)

Nr.	Name	Object function	Length	Data type
23,63, 103.143	Rocker $x-y$	Slat angle in \%	1 byte	5.001 DPT_Percentage $(0-100 \%)$

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker
"Up/Down" communication objects for shutter/blind operation (button)

Nr.	Name	Object function	Length	Data type
18,38,				
58.78	Button x	Up/Down	1 bits	1.008 DPT_Up/Down
98.118,				
138.158				
19,39,		Slat Step/Stop (step)	1 bits	1.007 DPT_Step
59.79,	Button x			
99.119,				
139.159				

"Position (0-100 \%)" communication objects for shutter/blind operation (button)

Nr.	Name	Object function	Length	Data type
22.42,				
62.82,	Button x	Position in \%	1 byte	5.001 DPT_Percentage (0-100 \%)
$\mathbf{1 0 2 . 1 2 2}$				
142.162				

Communication objects "Position/slat angle (0..100\%)" for shutter/blind operation (button)

Nr.	Name	Object function	Length	Data type
22.42,				
62.82,	Button x	Position in \%	1 byte	5.001 DPT_Percentage (0-100 \%)
102.122				
142.162				
23,43,		Slat angle in \%	5.001 DPT_Percentage $(0-100 \%)$	
63.83,	Button x			
103.123				

"Slat angle (0-100 \%)" communication objects for shutter/blind operation (button)

Nr.	Name	Object function	Length	Data type
23,43,				
63.83,	Button x	Slat angle in \%	1 byte	5.001 DPT_Percentage (0-100 \%)
103.123				

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

4.6 "Timer" function

i The "Timer" function is only available in the independent push-button operating mode. In the "Timer" function, when a short key-press occurs, the parameterised switch output is switched for the time set in the switch actuator. When a long key-press occurs, the ongoing timer operation is interrupted and the switch output is switched off.
When a short key-press occurs, a 1-bit switch command is transmitted to the bus and the respective output is switched on. When a long key-press occurs, an OFF command is transmitted by the same 1-bit object.

$\begin{array}{ll}\text { D } & \text { General } \\ \text { a } \\ \text { LED management }\end{array}$	Function	Timer	\bullet
b LED management 4 Push-button 1			
Function			

Figure 27: "Timer" function

An ON command on the "Timer" object in the TXA output products switches on the output for the set time.
If additional ON commands are transmitted to the "Timer" object within 10 s , the switch-on time of the output (for our TXA products) is calculated as follows:

Switch-on time = (1 + number of actuations) * set time in switch actuator
The set time begins to count down when the last key-press occurs. Pressing the button again after 10 s restarts (retriggers) the time set in the switch actuator. An OFF command switches off the output immediately.
"Timer" communication objects (button)

Nr.	Name	Object function	Length	Data type
18,38,				
58.78	Button x	Timer	1 bits	1.008 DPT_Start/Stop
98.118,				
138.158				

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.7 "Value 1 byte" function

In the following parameter window, the "Value 1 byte" function is parameterised and set as a rocker or independent push-button in the using mode.
The application provides a 1-byte communication object for each rocker or independent pushbutton. Pressing a button transmits the set value to the bus. In the "rocker" using mode, different values can be parameterised and set for the two rocker sides.

Figure 28: Function of the "Value 1 byte" independent push-button

Parameters	Description	Value
Function of the rocker "Value 1 byte" 1	This parameter assigns the rocker one of the following object values when pressed. A distinction is made between the function when pressing left or right. The 1 -byte value as a percentage is set using the slidebar.	Value (0-255) * Percent (0-100 \%)
Function of the independent push-button "Value 1 byte" ${ }^{1}$	This parameter assigns the independent push-button one of the following object values when pressed. The 1-byte value as a percentage is set using the slidebar.	Value (0-255) * Percent (0-100 \%)

Table 27: Function of the "Value 1 bytes" rocker/independent push-button
${ }^{1}$ If the respective function value is selected, another parameter window opens for setting the desired 1-byte value (0-255 / 0-100 \%).
"Value 1 byte (0-100 \%)" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
22.62, 102.142	Rocker $x-y$	Value in \%	1 byte	5.001 DPT_Percentage
22.62, 102.142	Rocker $x-y$	Value in (0-255)	1 byte	5.001 DPT_Percentage

[^19]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker
"Value 1 byte (0-100 \%)" communication objects (button)

Nr.	Name	Object function	Length	Data type
22,42,				
62.82,	Button x	Value in \%	1 byte	5.001 DPT_Percentage
102.122				
142.162				
22,42,		Value in (0-255)	1 byte	5.001 DPT_Percentage
62.82,	Button x			
102.122				

The "Value 1 byte" parameter defines which value range the push-button should use. Relative values ranging from 0 to 100% can be transmitted to the bus for the "Value 1 byte" function by means of a slide control.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.8 "Value 2 bytes" function

In the following parameter window, the "Value 2 bytes" function is parameterised and set as a rocker or button in the using mode.
The application provides a 2-byte communication object for each rocker or button. Pressing a button transmits the set value to the bus. In the "rocker" using mode, different values can be parameterised and set for the two rocker sides.

Figure 29: Function of the "Value 2 bytes" independent push-button

Parameters	Description	Value
Function of the rocker "Value 2 bytes" 1	This parameter assigns the rocker one of the following object values when pressed. A distinction is made between the function when pressing left or right.	Temperature Luminosity Value (0-65535) *
Function of the "Value 2 bytes" independent push-button	This parameter assigns the independent push-button one of the following object values when pressed.	Temperature Luminosity Value (0-65535) *

Table 28: Function of the "Value 2 bytes" rocker/independent push-button
${ }^{1}$ If the respective function value is selected, another parameter window opens for setting the desired 2-byte value (0-65535 / 0-1000 Lux / 0-40으)
"Value 2 bytes" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
24.64, 104.144	Rocker $x-y$	Value (0-65535)	2 byte	7.001 DPT_Pulse
24.64, 104.144	Rocker $x-y$	Temperature value	2 byte	9.001 DPT_Temperature $\left({ }^{\circ} \mathrm{C}\right)$
24.64, 104.144	Rocker $x-y$	Brightness value	2 byte	9.004 DPT_Lux (Lux)

"Value 2 bytes" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
24.44, 64,84, 104.124 144.164	Button x	Value (0-65535)	2 byte	7.001 DPT_Pulse
24.64, 104.144	Button x	Temperature value	2 byte	9.001 DPT_Temperature $\left({ }^{\circ} \mathrm{C}\right)$
24.64, 104.144	Button x	Brightness value	2 byte	9.004 DPT_Lux $($ Lux $)$

* Default value

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.9 Function "Room thermostat extension unit

This function allows an external KNX thermostat (KNX thermostat 80440100 or KNX room controller 80660100, for example) to be activated using the push-button operation button. This allows the user to change/adjust basic controller functions (such as override setpoint, setpoint selection, heating/cooling change-over, presence detection) from different places in the room.
i] The thermostat extension is, however, not actively involved in the actual calculation of the temperature control.
i The thermostat extension only works properly when all communication objects are connected to the appropriate objects in the associated KNX thermostat with a group address.

Figure 30: Function of the "Room thermostat extension unit" independent push-button

Parameters	Description	Value
Function of the "Thermostat extension" rocker 1	This parameter assigns the following function to the rocker in the "Thermostat extension" function.	Override setpoint * Setpoint selection
	Heating/cooling-changeover A distinction is made between the function when pressing left or right.	Presence

Table 29: Function of "Rocker/room thermostat extension unit" button
${ }^{1}$ If the respective function value is selected, another parameter window opens for setting the desired function type.

[^20]1-fold multifunctional push-button; 2-fold multifunctional push-button

Parameters	Description	Value
"Override setpoint"	This parameter defines which operating mode is transmitted to the KNX when a button is pressed (on the controller extension). Rocker function: different operating modes can be set for the left and right rocker sides Independent push-button: one operating mode assigned for when the button is pressed	Comfort * Standby Night setpoint Frost protection Auto
"Setpoint selection"	With this parameter, pressing the rocker/independent push-button in the "Setpoint selection" function changes the setpoint temperature in a thermostat. This means: When a button is pressed (independent push-button or rocker operation left/ right), a new set temperature including the defined increase $\left(+0.5^{\circ} \mathrm{C}\right.$ or $+1.0^{\circ} \mathrm{C}$) or decrease $\left(-0.5^{\circ} \mathrm{C}\right.$ or $-1.0^{\circ} \mathrm{C}$) - is transmitted to the KNX or KNX thermostat. Two 2-byte objects are available for communication here.	$-1.0^{\circ} \mathrm{C} \ldots+1.0^{\circ} \mathrm{C}$ *
"Heating/cooling-changeover"	With this parameter, each time the independent push-button or rocker (left/ right) is pressed, the function of the heating system (heating/cooling) is changed over. Two 1-bit objects are available for communication here (changeover and status indication).	
"Presence"	When this function is active, pressing the independent push-button or rocker function (left/right) activates or deactivates a specific presence function.	Presence ON Presence OFF * Presence toggle switch

Table 30: Function of the "Thermostat extension" rocker/independent push-button

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

* Default value

The "Override setpoint" function allows the "Comfort", "Standby", "Frost protection", "Night setpoint" or "Auto" operating modes to be transmitted to the bus.

Example:

- Comfort

The Comfort operating mode sets the room temperature to a temperature value predefined in the thermostat (comfort temperature $21^{\circ} \mathrm{C}$, for example) for comfort (presence).

- Standby

The Standby operating mode reduces the room temperature after leaving the room (brief absence) to a value predefined in the thermostat ($19^{\circ} \mathrm{C}$, for example).

- Frost protection

The Frost protection operating mode reduces the heating circuit temperature to a minimum temperature of $7^{\circ} \mathrm{C}$ defined in the controller to protect against frost damage over night or during periods of extended absence.

- Night lowering

The Night setpoint operating mode turns down the room temperature during a long absence (holiday, for example) to a value of $17^{\circ} \mathrm{C}$, for example, defined in the thermostat.

- Auto

The Auto operating mode automatically resets the operating mode to the current operating mode (after forced position, for example).
i With underfloor heating, the change-over from "Comfort" to "Standby" is only noticeable after a certain period of time due to the sluggishness of the underfloor heating system.
"Override setpoint" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
22.62, 102.142	Rocker $x-y$	Override setpoint	1 byte	20.102 DPT_HVAC mode

"Override setpoint" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
22,42,				
62,82,	Button x	Override setpoint	1 byte	20.102 DPT_HVAC mode
102.122				
142.162				

"Heating/cooling-changeover" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
13.53, 93.133	Rocker $x-y$	Heating/cooling -status indication	1 bits	1.100 DPT_heating/cooling
18.58, 98.138	Rocker $x-y$	Heating/cooling- changeover	1 bits	1.100 DPT_heating/cooling

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker
"Heating/cooling-changeover" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
13.33,		Heating/cooling - status 53,73 indication	1 bits	1.100 DPT_heating/cooling
93.113,	Button x			
133.153		Heating/cooling-	1 bits	1.100 DPT_heating/cooling
18.38,		changeover		
58,78	Button x			
138.118,				

"Setpoint selection" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
24.64, 104.144	Rocker $x-y$	Setpoint selection	2 byte	9.002 DPT_Temperature difference $\left({ }^{\circ} \mathrm{C}\right)$
29.69, 109.149	Rocker $x-y$	Setpoint selection status	2 byte	9.002 DPT_Temperature difference $\left({ }^{\circ} \mathrm{C}\right)$

"Setpoint selection" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
$\begin{aligned} & \hline 24.44, \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Rocker x-y	Setpoint selection	2 byte	9.002 DPT_Temperature difference $\left({ }^{\circ} \mathrm{C}\right)$
$\begin{aligned} & \hline 29.49, \\ & 69.89, \\ & 109.129 \\ & 149.169 \end{aligned}$	Rocker x-y	Setpoint selection status	2 byte	9.002 DPT_Temperature difference (${ }^{\circ} \mathrm{C}$)

"Presence" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
18.58, 98.138	Rocker $x-y$	Presence	1 bits	1.100 DPT_ON/OFF

"Presence" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
18.38,				
58,78,	Button x	Presence	1 bits	1.100 DPT_ON/OFF
98.118				
138.158				

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.10"Priority" function

The "Priority" function for the independent push-button and rocker is configured in this section. This function allows a switch output to be forced to a switch position by a 2-bit telegram regardless of the ON/OFF object (higher priority).

The value of the 2-bit telegram is defined according to the following syntax:

When "Priority" is active, incoming switch telegrams are still evaluated internally; when "Priority" is no longer active, the current internal switch condition, according to the ON/OFF object value, is set.
A "Priority" function activated before a bus voltage failure is always deactivated after a bus voltage recovery. The effect of the "Priority" function depends on the actuator channel connected (lighting, shutter/blind, heating).

Figure 31: "Priority" function

Value		Output behaviour
Bit $\mathbf{1}$	Bit $\mathbf{0}$	
0	$0 / 1$	End of "Priority"
1	0	"Priority" OFF
1	1	"Priority" ON

Table 31: "Priority" 2-bit communication object

Parameters	Description	Value
Function of the "Priority" rocker	This parameter assigns the following function to the rocker in the "Priority" function. A distinction is made between the function when pressing the rocker left or right.	ON * Off
Function of the "Priority" independent push-button	This parameter assigns the following function to the independent push-button in the "Priority" function when the button is pressed.	ON * Off

Table 32: Function of the "Priority" rocker/independent push-button

[^21]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button
"Priority" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
13,53, 93,133	Rocker $x-y$	Priority status indication	1 bits	1.011 DPT_Status
20.60, 100.140	Rocker $x-y$	Priority	2 bits	2.001 DPT_Status

"Priority" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
13.33,				
53,73	Button x	Priority status indication	1 bits	1.011 DPT_Status
93.113,				
133.153				
20.40,		Priority	bits	2.001 DPT_Status
60.80,	Button x			
100.120				

Example: "Window cleaner" function

The window cleaner function is an application that prevents a manual operation of the blind/ roller shutter from being executed during the window cleaning. As a result, the blind/roller shutter operation is disabled from a central point. Blinds that have already been lowered are moved to the upper stop position. The manual blind/roller shutter function is also enabled from a central point.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.11 "Scene" function

In the following parameter window, the "Scene" function is parameterised and set as a rocker and button in the operating concept.

D	General
LED management	
Push-button 1	
\quad Function	
Push-button 2	
D Rocker 3-4	
D	Rocker 5-6
D	Internal temperature sensor

```
Function
    Scenes memorisation
    by long key press
    Emission time delay
Scene number
```


Figure 32: "Scene" function
The "Scene" function can be used as a scene extension and can be used to call up or save configured light scenes that are stored in other KNX devices. The device can call up and save a maximum of 64 scenes. Through a short key-press, the device transmits a value between 0 and 63 (where value 0 corresponds to scene 1 and value 63 corresponds to scene 64) to the bus via the scene control communication object. The scene is called up when the button is released.

Bit number							
7	6	5	4	3	2	1	0
Save	X	Scene number $(0=$ scene 1 ---- bit no. +1 = scene number $)$					

Table 33: Structure of 1-byte scene communication object
$X=$ not relevant.
If the scene memorisation function is activated with a long key-press, the scene parameter values can be connected to the device and stored with a long key-press. Scene memorisation can also be deactivated with a long key-press (untick box figure 32, 1).

Parameters	Description	Value
Function of the "Scene" (scene extension) rocker	This parameter assigns a scene number to the rocker in the "Scene" function. A distinction is made here between the function when pressing the rocker left/right.	Scene number, left button (1*-64) Scene number, right button (1*-64)
Function of the "Scene" (scene extension) push-button	This parameter assigns a scene number to the push-button in the "Scene" function when the button is pressed.	Scene number (1*-64)
Scene memorisation by long key- press ${ }^{1}$	A changed scene can be saved again by activating this function by ticking the box.	

Table 34: Function of the "Scene" rocker/independent push-button
${ }^{1}$ Scene memorisation is confirmed by the flashing of the respective status LED of the button (1 second).
If the parameters of a scene are changed by the device, the new scene parameters can be saved by a long press of the button.

* Default value

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button
"Scene" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
22,62, 102.142	Rocker $x-y$	Scene	1 byte	18.001 DPT_Scene control

"Scene" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
22,42,				
62,82,	Button x	Scene	1 byte	18.001 DPT_Scene control
102.122				
142.162				

Example: scene memorisation procedure

■ Switch on scene (in this example "Scene TV") by briefly pressing the button (Figure 33, A-1)
Scene is activated e.g., lighting dimmed to 30%, blind closed to 85%)

Figure 33: Scene call-up
Set and save new scene parameters on the push-button.
■ Change lighting intensity, dim up or down (Figure 34, B-1)

- Change, open or close blind position (Figure 34, B-2)

B

1

Figure 34: Set new scene parameters

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker
■ Hold the button for "Scene TV" for longer than 5 s (Figure 35, C-1)
New scene parameters have been saved. Pressing the "Scene TV" button again activates the new scene settings.

Figure 35: Saving new scene parameters
i The "Save scene by a long key-press" function is switched on by default.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.12"2-channel mode" function

The different function variants of the "2-channel mode function" for the independent button and the rocker are presented and described in the parameter window below.

General	Function
LED management	Using mode
Push-button 1	
Function	Channel A function
Push-button 2	Function by press
Rocker 3-4	Channel B function
Rocker 5-6	Temperature

Figure 36: "2-channel mode function" parameter
The "2-channel mode" (2-channel operation) enables two functions to be executed and transmitted to the KNV via different communication objects using the same independent pushbutton or rocker side.
As a result, the selected rocker/independent push-button is assigned an additional second channel. This means, for example, that different light channels can be switched on or off, or set to a brightness value without needing to configure a scene.

Parameters	Description	Value
Using mode of the independent push-button/rocker	This parameter sets the using mode for the rocker side/ independent push-button.	Channel A or B* Channel A and B
Channel A function Channel B function	This parameter sets the respective function of the independent push- button/rocker side for channel A and channel B.	ON/OFF * Value 1 byte Percentage (0-100 \%) Temperature Brightness Value 2 bytes

i. Depending on the function selection, the corresponding value must be set in an additional parameter.

Table 35: Function of the "2-channel mode" rocker/button

[^22]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Channel A or B using mode:

In this using mode, a key-press always only triggers one of the two set channel functions.
This means that the function stored for channel A (light ON, for example) is triggered by a short key-press and the function stored for channel B (temperature $21^{\circ} \mathrm{C}$, for example) is triggered by a long key-press.
The press duration used to differentiate between a short and a long key-press can be defined in settings „General \rightarrow Parameters" (from 500 ms to 10 s).

Figure 37: Channel A or Channel B operating concept
T1: Time between channel A and channel B

Channel A and B using mode:

In this using mode, a short key-press triggers the channel A and a long key-press will trigger first the channel A and then the channel B.
This means that the function stored for channel A (light ON, for example) and the function stored for channel B (temperature $21^{\circ} \mathrm{C}$, for example) are transmitted to the KNX with the same keypress.

Figure 38: Channel A and Channel B operating concept
T1: Time between channel A and channel B
i This function is used one or more functions are to be switched on one push-button (not enough operating sections on the device used).
Only the "ON/OFF", "Value 1 byte/2 bytes", "Temperature value", "Brightness value" and "Percentage value" functions are available in this operation mode.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

Parameters	Description	Value
Function when the individual push-button is pressed	When the "ON/OFF" function is selected, the following values are available for the independent pushbutton.	Not active * OFF ON * Toggle switch
Function when the rocker is pressed right/left	When the "ON/OFF" function is selected, the following values are available for the rocker side.	Not active * OFF ON * Toggle switch
Value (0-255)	When the "Value 1 byte" function is selected, a value for the rocker side/independent push-button of $0-255$ can be set.	0*... 255
Percentage (0-100 \%)	When the "Percentage (0-100 \%)" function is selected, a percentage value for the rocker side/ independent push-button of 0-100 $\%$ can be set using the slidebar.	0 *... 100\%
Temperature	When the "Temperature" function is selected, a value for the rocker side/independent push-button of $0-40^{\circ} \mathrm{C}$ can be set.	$0^{*} \ldots 40^{\circ} \mathrm{C}$
Brightness value	When the "Brightness" function is selected, a value for the rocker side/ independent push-button of 0-1000 Lux can be set.	0 *... 1000 Lux
Value (0-65535)	When the "Value 2 bytes" function is selected, a value for the rocker side/independent push-button of 065535 can be set.	0 *... 65535

Table 36: Function of the "2-channel mode" rocker/button

* Default value

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

"2-channel mode" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
$\begin{aligned} & 18.58 \\ & 98.138 \end{aligned}$	Rocker x - y	Channel A ON/OFF	1 bits	1.001 DPT_ON/OFF
$\begin{aligned} & 26.66 \\ & 106.146 \end{aligned}$		Channel B ON/OFF	1 bits	1.001 DPT_ON/OFF
$\begin{aligned} & \text { 22.62, } \\ & 102.142 \end{aligned}$	Rocker x-y	Channel A value (0255)	1 byte	5.010 DPT_Counting pulse
$\begin{aligned} & \hline 27.67 \\ & 107.147 \end{aligned}$		Channel B value (0255)	1 byte	5.010 DPT_Counting pulse
$\begin{aligned} & 22.62, \\ & 102.142 \end{aligned}$	Rocker $\mathrm{x}-\mathrm{y}$	Channel A value (\%)	1 byte	5.010 DPT_Percentage (\%)
$\begin{aligned} & \text { 27.67, } \\ & 107.147 \end{aligned}$		Channel B value (\%)	1 byte	5.010 DPT_Percentage (\%)
$\begin{aligned} & \text { 24.64, } \\ & 104.144 \end{aligned}$	Rocker $\mathrm{x}-\mathrm{y}$	Channel A value (temperature)	2 byte	9.001 DPT_Temperature (${ }^{\circ} \mathrm{C}$)
$\begin{aligned} & \hline \text { 28.68, } \\ & \text { 108.148 } \end{aligned}$		Channel B value (temperature)	2 byte	9.001 DPT_Temperature (${ }^{\circ} \mathrm{C}$)
$\begin{aligned} & \text { 24.64, } \\ & 104.144 \end{aligned}$	Rocker x - y	Channel A value (brightness)	2 byte	9.004 DPT_Lux (Lux)
$\begin{aligned} & \hline \text { 28.68, } \\ & \text { 108.148 } \end{aligned}$		Channel B value (brightness)	2 byte	9.004 DPT_Lux (Lux)
$\begin{aligned} & \hline 24.64, \\ & 104.144 \end{aligned}$	Rocker x-y	Channel A value (0- 65535)	2 byte	7.001 DPT_Pulse
$\begin{aligned} & \hline 28.68, \\ & 108.148 \end{aligned}$		$\begin{aligned} & \text { Channel B value (0- } \\ & 65535 \text {) } \end{aligned}$	2 byte	7.001 DPT_Pulse

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
"2-channel mode" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
18.38 58.78 98.118 138.158	Button x	Channel A ON/OFF	1 bits	1.001 DPT_ON/OFF
$\begin{array}{\|l\|} \hline 26.46 \\ 66.86 \\ 106.126 \\ 146.166 \end{array}$		Channel B ON/OFF	1 bits	1.001 DPT_ON/OFF
$\begin{aligned} & \hline 22.42, \\ & 62,82 \\ & 102.122 \\ & 142.162 \end{aligned}$	Button x	Channel A value (0 255)	1 byte	5.010 DPT_Counting pulse
$\begin{array}{\|l\|} \hline 27.47, \\ 67,87 \\ 107.127 \\ 147.167 \end{array}$		Channel B value (0- 255) 255)	1 byte	5.010 DPT_Counting pulse
$\begin{array}{\|l\|} \hline 22.42, \\ 62,82 \\ 102.122 \\ 142.162 \end{array}$	Button x	Channel A value (\%)	1 byte	5.010 DPT_Percentage (\%)
$\begin{array}{\|l\|} \hline 27.47 \\ 67,87 \\ 107.127 \\ 147.167 \end{array}$		Channel B value (\%)	1 byte	5.010 DPT_Percentage (\%)
$\begin{aligned} & \text { 24.44, } \\ & 64,84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Button x	Channel A value (temperature)	2 byte	9.001 DPT_Temperature (${ }^{\circ} \mathrm{C}$)
$\begin{array}{\|l} \hline 28.48, \\ 68,88, \\ 108.128 \\ 148.168 \end{array}$		Channel B value (temperature)	2 byte	9.001 DPT_Temperature (${ }^{\circ} \mathrm{C}$)
$\begin{aligned} & 24.44, \\ & 64,84 \\ & 104.124 \\ & 144.164 \end{aligned}$	Button x	Channel A value (brightness)	2 byte	9.004 DPT_Lux (Lux)
$\begin{aligned} & 28.48, \\ & 68,88, \\ & 108.128 \\ & 148.168 \end{aligned}$		Channel B value (brightness)	2 byte	9.004 DPT_Lux (Lux)
$\begin{array}{\|l\|} \hline 24.44, \\ 64,84, \\ 104.124 \\ 144.164 \end{array}$	Button x	Channel A value (065535)	2 byte	7.001 DPT_Pulse
$\begin{array}{\|l} \hline 28.48, \\ 68,88, \\ 108.128 \\ 148.168 \end{array}$		$\begin{aligned} & \text { Channel B value (0- } \\ & 65535 \text {) } \end{aligned}$	2 byte	7.001 DPT_Pulse

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

4.13"Step switch" function"

In the following parameter window, the respective function and selection options of the "Step switch" function are displayed and configured.

D General	Function	Stepping switch	\checkmark
4 Push-button 1	Value type stepping switch	Value (0-255)	\checkmark
Function			
D Push-button 2	Behaviour	Flow and return	\checkmark
D Rocker 3-4			
D Rocker 5-6	Stepping number	1	\square
D Internal temperature sensor			
D Information	Step 1 (0-255)	0	\square

Figure 39: "Step switch" function"

General:

This "Stepping switch" function allows for up to 7 different telegrams to be configured for a function (for example, value $0-255$, value \%, scene 1-64). Repeatedly pressing the same independent push-button or rocker also calls up the individual steps.
A defined behaviour for the independent push-button operation (pass through, flow and return, see Fig. 35 and 36) and rocker operation (Up/Down incremental and Down/Up incremental, see Fig. 33 and 34) can also be generated for the calling up of the values.

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Parameters	Description	Value
Value type stepping switch	In this parameter, the "Stepping switch" function is assigned the corresponding value.	Value (0-255)* Value (\%) Scene
Performance	This parameter defines the behaviour for the stepping switch when the button is pressed.	Pass through* Flow and return
Behaviour when pressed (left/right)	This parameter defines the behaviour for the stepping switch when the rocker is pressed left/ right.	Up/Down * Down/Up
Stepping number ${ }^{4}$	This parameter defines the number of steps for the button.	$\mathbf{1}^{*} \ldots 7$
Step $\times(0-255)^{1,4}$	This parameter sets the step value that is transmitted to the bus with each key-press.	$\mathbf{0}$ * $\ldots 255$
Step $\times(0-100 \%)^{2,4}$	This parameter sets the step value that is transmitted to the bus with each key-press.	$\mathbf{0}$ * ...100\%
Step $\times\left(\right.$ scene 1-64) ${ }^{3,4}$	This parameter sets the step value that is transmitted to the bus with each key-press.	$\mathbf{1}^{*} \ldots 64$

Table 37: Function of the "Stepping switch" rocker/independent push-button
${ }^{1}$ This parameter is visible when "Value (0-255)" is selected.
${ }^{2}$ This parameter is visible when "Value (\%)" is selected.
${ }^{3}$ This parameter is visible when "Scene" is selected.
${ }^{4}$ The individual steps 1-x are visible and adjustable depending on the amount of steps in the "Stepping number" parameter. There are a maximum of seven steps.

[^23]
KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

Berker
"Stepping switch" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
22,62, 102.142	Rocker $x-y$	Value (0-255)	1 byte	5.010 DPT_Counting pulse (0-255)
22,62, 102.142	Rocker $x-y$	Value in \%	1 byte	5.001 DPT_Percentage (0-100 \%)
22,62, 102.142	Rocker $x-y$	Scene	1 byte	18.001 DPT_Scene control

"Stepping switch" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
22,42,				
62,82,	Button x	Value (0-255)	1 byte	5.010 DPT_Counting pulse (0-255)
102.122				
142.162		Value in \%	1 byte	5.001 DPT_Percentage (0-100 \%)
22,42,				
62,82,	Button x		1 byte	18.001 DPT_Scene control
102.122		Scene		
22,42,				
102,82,	Button x			
142.122				

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Data point type	Value type	Data point size	Value range limit
$D P T 5.001$	Percentage value	1 byte	$[0 \ldots 100 \%]$
$D P T 5.010$	Integer value	1 byte	$[0 \ldots 255]$
$D P T 18.001$	Scene	1 byte	$[1 \ldots 64]$

Table 38: Stepping switch value processing

4.13.1 Behaviour during rocker operation

The first setting in the rocker configuration is the selection of the respective function or value range for the entire rocker (left and right).
Then the possible behaviour for calling up the individual step values when the rocker is pressed is set (Figure 40)

The following modes of operation are possible:
A. Left $=$ increment

Right $=$ decrement
B. Left = decrement

Right $=$ increment

Figure 40: Rocker function selection

In the next step, the possible number of steps (values) must be selected. A maximum of 7 steps for each rocker can be configured. There are a maximum of seven steps (1, 2, 3, 4, 5, 6, 7).
Once the possible number of steps has been selected, the individual value ranges for each step are parameterised on an individual basis. The possible value ranges can be found in "„Table 38: Stepping switch value processing" auf Seite 70".

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

Berker

Example: setting the value using the stepping switch in rocker configuration

Figure 41: Stepping switch function

Example: "pass through" step principle

Figure 42: "Pass through" stepping switch function

Example: "Flow and return" step principle

Figure 43: "Flow and return" stepping switch function

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

4.14"Deactivate automatic functions" function

The "deactivate automatic functions" function is described and presented in the following section.

Figure 44: "Automatic control deactivation" parameter
"Automatic control" communication objects (rocker)

Nr.	Name	Object function	Length	Data type
13,53, 93,133	Rocker $x-y$	Automatic control deactivation status	1 bits	1.003 DPT_Enable
18,58, 98,138	Rocker $x-y$	Deactivate automatic	1 bits	1.003 DPT_Enable

"Priority" communication objects (independent push-button)

Nr.	Name	Object function	Length	Data type
13.33,		Automatic control	1 bits	1.003 DPT_Enable
53,73	Button x	deactivation status		
93.113,				
133.153		Deactivate automatic	1 bits	1.003 DPT_Enable
18.38,				
58,78	Button x	98.118,		
138.158				

With this1-bit communication object automatic sequences already running in the actuators can be deactivated, switched off.

Example: time-dependent outside lighting ON/OFF

The outside lighting is switched on and off at a certain time every day of the week.
However, on certain occasions (garden parties) the outside lighting should stay on for longer. In such cases, the "Automatic control deactivation" function is used to deactivate/ switch off the time-dependent switching on/off of the outside lighting. To do so, a 1-bit command is transmitted to the bus.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button

5. "Temperature sensor" function parameters

In this following section, the configuration and parameterisation of the internal and external temperature sensors are described and presented.
i Both temperature sensors can be activated/deactivated independently from one another, which means that they can also be parameterised separately.

5.1 Internal temperature sensor

The user module is directly fitted with a sensor for temperature measurement.
The temperature measured can therefore be transmitted to the bus depending on the parameters shown below (see Figure 45).
i The measured room air can, for example, be transmitted directly to a KNX thermostat as a second measuring point (measurement result) and can be used to synchronise the global actual temperature (synchronisation in larger rooms).
i Room temperature recorded as a measurement result for a building visualisation

D General	Sensor	Active	\checkmark
LED management			
D Push-button 1	Temperature calibration	$0,0^{\circ} \mathrm{C}$	\checkmark
D Push-button 2			
D Rocker 3-4	Temperature emission by variation of ($\mathrm{x} 0,1^{\circ} \mathrm{C}$)	5	\square
D Rocker 5-6			
4 Internal temperature sensor Parameters	Temperature periodical emission	20 min	\bullet
External temperature sensor D Information			

Figure 45: Internal temperature sensor function parameters

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

5.2 External temperature sensor

The external temperature sensor is a cable-based remote sensor (EK090) that can be connected to the bus application unit (80040001) directly. The temperature measured can therefore be transmitted to the bus depending on the parameters shown below (see Figure 46).
i The measured remote sensor temperature can also be transmitted directly to a KNX thermostat as a second measuring point (measurement result) and can be used to synchronise the floor temperature (synchronisation in larger rooms), for example.
i The ambient temperature, for example, recorded as the measurement result when the push-button is installed in an unfavourable location (outside, etc.).

Figure 46: External temperature sensor function parameters

Parameters	Description	Value
Sensor	This parameter first decides whether the temperature sensor remains activated or deactivated.	Not active * Active
Temperature calibration ${ }^{1}$	With this parameter the difference between the measured temperature on the device and the measured temperature is adjusted by a reference measuring device. "Calibration of the temperature sensor"	$-5^{\circ} \mathrm{C}-0^{\circ} \mathrm{C} *-5^{\circ} \mathrm{C}$
Temperature emission by variation of $\left(x 0.1^{\circ} \mathrm{C}\right)^{1}$	This parameter defines at what temperature difference a new value is automatically transmitted to the bus. Should be transmitted (time-independently).	$0 . .5$ *... 255
Temperature periodical transmission 1	This parameter defines in which cycle the actual value is compared with the setpoint and should be transmitted to the bus.	Not active $10 \mathrm{~s}-20 \mathrm{~min} \text { * }-30 \mathrm{~min}$
Physical sensors ${ }^{2}$	This parameter enables the selection of the corresponding temperature sensor.	Hager EK090 *

Table 39: Internal/external temperature sensor function parameters
${ }^{1}$ These parameters are only visible when the "Sensor" parameter is set to "Active".
${ }^{2}$ This parameter is also visible in the external temperature sensor settings.

* Default value

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker
"External temperature sensor" communication objects

Nr.	Name	Object function	Length	Data type
172	Internal temperature sensor	Internal temperature sensor	2 byte	9.001 DPT_Temperature $\left({ }^{\circ} \mathrm{C}\right)$

"External temperature sensor" communication objects

Nr.	Name	Object function	Length	Data type
173	External temperature sensor	External temperature sensor	2 byte	9.001 DPT_Temperature $\left({ }^{\circ} \mathrm{C}\right)$

When selecting the installation site of the device or external sensor, the following points should be taken into consideration:
i Integrating the push-button into multiple combinations should be avoided especially when a flush-mounted dimmer is also installed.
i The sensors should not be installed near to large electrical consumers (heat radiation).
i The device/sensor should not be installed near to heaters or cooling systems.
i The temperature sensor must be kept out of direct sunlight.
i Installing sensors on the inside of external walls may negatively influence the temperature measurement.
i Temperature sensors should be installed at least 30 cm away from doors and windows and at least 1.5 m above the floor.

The room temperature is only actually controlled using the thermostat.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

6. "Information" parameter window

This parameter window specifies which application, database version and translation version the deployed device works with.

Deneral	Version of translation file	1.0 .0
DED management		
D	Push-button 1	
D	Push-button 2	
D	Rocker 3-4	
D	Rocker 5-6	
D	Internal temperature sensor	
D	External temperature sensor	
4.		

Figure 47: "Information" parameter window

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7. Communication objects

7.1 "General" communication objects

7.1.1 Blocking function

Figure 48: "General - Lock-up" communication objects

Nr.	Name	Object function	Length	Data type	Flags
4	General	Blocking function	1 bits	DPT_Status	C, W

This object is always visible but must be activated for each independent push-button/rocker separately.
This object enables the locking-up of another independent push-button/rocker; a $0 / 1$ is transmitted to the respective lock-up object of the other device or the independent push-button/rocker is locked-up by another device when a 0/1 is received.
For further information see „3.1 Blocking function" auf Seite 17.

7.1.2 "Alarm" communication object

Figure 49: "Alarm" communication object

Nr.	Name	Object function	Length	Data type	Flags
3	General	Alarm	1 bits	DPT_Status	C, W

This object is visible when the alarm function is activated under "General - Alarm".
This object enables the emission of an alarm message. The alarm message can, for example, come via a KNX networked room alarm system.
For further information see „3.4 Alarm" auf Seite 21.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.2 Status LED communication objects

7.2.1 "Direction LED ON/OFF" colour and brightness

$\stackrel{-1}{+\mid} 5$	LED management	Day/night	1 bit	K	-	S	-	-		Niedrig
$\stackrel{\rightharpoonup}{+}{ }_{\text {¢ }} 6$	LED management	Device LED - ON/OFF	1 bit	K	-	S	-	-	Schalten	Niedrig
	LED management	Direction LED - status indication	1 bit	K	-	S	Ü	A	Schalten	Niedrig
- $\vec{H}^{\text {¢ }} 8$	LED management	Direction LED - dimming value day	1 Byte	K	-	5	-	-	Prozent (0..100\%)	Niedrig
팍 9	LED management	Status LED - luminosity day	1 Byte	K	-	5	-	-	Prozent (0..100\%)	Niedrig
$\stackrel{+1}{\boldsymbol{*}} 10$	LED management	Direction LED - dimming value night	1 Byte	K	-	5	-	-	Prozent (0.100\%)	Niedrig
$\stackrel{\square}{\boldsymbol{*}} \mid 11$	LED management	Status LED - luminosity night	1 Byte	K	-	5	-	-	Prozent (0.100\%)	Niedrig

Figure 50: "LED management" communication objects

Nr.	Name	Object function	Length	Data type	Flags
5	LED management	Day/Night	1 bits		C, W
6	LED management	Device LED ON/OFF	1 bits	DPT_Switching	C, W
7	LED management	Direction LED status indication	1 bits	DPT_Switching	C, W

These objects are visible when the "LED management" function is activated under "LED management - General". This object enables the device LEDs to be permanently switched on/off.
For further information see „3.5 „LED management" parameters" auf Seite 22.

7.2.2 Change of brightness value through object

Nr.	Name	Object function	Length	Data type	Flags
8	LED management	Direction LED - dimming value day	1 byte	DPT_Percentage $(0-100 \%)$	C, W
9	LED management	Status LED - brightness day	1 byte	DPT_Percentage $(0-100 \%)$	C, W
10	LED management	Direction LED - dimming value night	1 byte	DPT_Percentage $(0-100 \%)$	C, W
11	LED management	Status LED - brightness night	1 byte	DPT_Percentage $(0-100 \%)$	C, W

These objects are visible when the "Change of brightness value through object" function is activated under "LED management - General".
These objects enable the changing of the status LED brightness value for daytime and nighttime operation.
For further information see „3.5 „LED management" parameters" auf Seite 22.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

7.2.3 "Status LED single button/rocker" communication objects

$\|\overrightarrow{\boldsymbol{t}}\| 12$	Push-button 1	Separately LED object	1 bit	C	-	W	T	U	switch	Low
$\stackrel{\rightharpoonup}{\mathbf{t}} \mid 32$	Push-button 2	Separately LED object	1 bit	C	-	W	T	U	switch	Low
\| $\overrightarrow{\mathbf{4} \mid} 71$	Push-button 3	Status LED - 1 byte unsigned	1 Byte	C	-	w	T	U	counter pulses (0.255)	Low
$\stackrel{\|+\|}{\text { \| }} 90$	Push-button 4	Status LED - 2 bytes unsigned	2 Byte	C	-	W	T	U	pulses	Low
$\mid \overrightarrow{\boldsymbol{t}}$ \| 111	Push-button 5	Status LED - 1 byte signed	1 Byte	C	-	w	T	U	counter pulses (-128..1.	
$\|\overrightarrow{\mathbf{t}}\| 130$	Push-button 6	Status LED - 2 bytes signed	2 Byte	C	-	W	T	U	pulses difference	Low

Figure 51: "Status LED single button/rocker" communication objects

Nr.	Name	Object function	Length	Data type	Flags
$\begin{array}{\|l} \hline 12,52, \\ 92.132 \end{array}$	Rocker x				
$\begin{aligned} & \hline 12.32, \\ & 52.72, \\ & 92.112, \\ & 132.152 \end{aligned}$	Button x	Separate LED object	1 bits	DPT_Switching	C, W, T, U
$\begin{array}{\|l\|} \hline 31.71 \\ 111.151 \end{array}$	Rocker x				
$\begin{array}{\|l\|} \hline 31.51, \\ 71.91, \\ 111.131, \\ 151.171 \\ \hline \end{array}$	Button x	Status LED - 1 byte unsigned	1 byte	DPT_Counting pulse	C, W, T, U
$\begin{array}{\|l\|} \hline 30.70, \\ 110.150 \\ \hline \end{array}$	Rocker x				
$\begin{aligned} & \hline 30.50, \\ & 70.90, \\ & 110.130 \\ & 150.170 \end{aligned}$	Button x	Status LED - 2 bytes unsigned	2 byte	DPT_Pulse	C, W, T, U
$\begin{aligned} & \hline 31.71, \\ & 111.151 \end{aligned}$	Rocker x				
$\begin{array}{\|l\|} \hline 31.51, \\ 71.91, \\ 111.131, \\ 151.171 \\ \hline \end{array}$	Button x	Status LED - 1 byte signed	1 byte	DPT_Counting pulse	C, W, T, U
$\begin{aligned} & \hline 30.70, \\ & 110.150 \end{aligned}$	Rocker x				
$\begin{array}{\|l\|} \hline 30.50, \\ 70.90, \\ 110.130 \\ 150.170 \end{array}$	Button x	Status LED - 2 bytes signed	2 byte	DPT_Pulse	C, W, T, U

These objects are activated when the status LED parameters are set in the parameters for each independent pushbutton/rocker. The "Status LED colour concept" parameter under "LED management" must be set to "Individual".
These objects ($31,51,71,91,111,131,151,171 / 30,50,70,90,110,130,150,170$) allow the return of the status value for the respective switching command. The return of the status value is used for switching an actuator channel by two buttons in toggle mode.
These objects (12, 32, 52, $72,92,112,132,152,172$) can be switched by an external switching command. For further information see „3.5 „LED management" parameters" auf Seite 22.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3 "Independent push-button/rocker" communication objects

7.3.1 Toggle switch

$\|\overrightarrow{\boldsymbol{t}}\| 13$	Rocker 1-2	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
\| ${ }_{\boldsymbol{+}} \mid 18$	Rocker 1-2	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\|\vec{k}\| 53$	Rocker 3-4	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\|\overrightarrow{\mathbf{\|} \mid}\| 58$	Rocker 3-4	ON/OFF	1 bit	C	-	-	T	-	switch	Low
\| $\overrightarrow{\boldsymbol{k}}$ \| 93	Rocker 5-6	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\|\stackrel{\mid}{\mathbf{+}}\| 98$	Rocker 5-6	ON/OFF	1 bit	C	-	-	T	-	switch	Low

Figure 52: Rocker "Toggle switch" communication object

$\overrightarrow{\text { t }} 13$	Push-button 1	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\overrightarrow{+} 18$	Push-button 1	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\overrightarrow{\text { t }} 33$	Push-button 2	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
+ ${ }^{\text {\| }} 38$	Push-button 2	ON/OFF	1 bit	C	-	-	T	-	switch	Low
+ ${ }^{\text {c }} 3$	Push-button 3	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\overrightarrow{\text { t }} 58$	Push-button 3	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\overrightarrow{\text { + }} 73$	Push-button 4	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
+ ${ }^{\text {l }} 78$	Push-button 4	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\overrightarrow{\text { + }} 93$	Push-button 5	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\overrightarrow{\text { + }} 98$	Push-button 5	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\vec{*} \mid 113$	Push-button 6	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\vec{t} \mid 118$	Push-button 6	ON/OFF	1 bit	C	-	-	T	-	switch	Low

Figure 53: Independent push-button "Toggle switch" communication object

Nr.	Name	Object function	Length	Data type	Flags
13,53,	Rocker x				
93.133		ON/OFF status indication	1 bits	DPT_Switching	C, W, T, U
13.33,					
53.73,	Button x				
93.113,			DPT_Switching	C, T	
133.153		Switching			
18,58,	Rocker x				
98.138					
18.38 58.78, 98.118,	Button x				
138.158					

These objects are activated when the "Toggle switch" function is selected in the parameters for each independent push-button/rocker.
These objects $(13,33,53,73,93,113,133,153)$ allow the return of the status value for the respective switching command. The return of the status value is used for switching an actuator channel by two buttons in toggle mode. These objects ($18,38,58,78,98,118,138,158$) transmit a 1 -bit command to the actuator channel and trigger a switching command when the button is pressed.
For further information see „4.2 „Toggle switch" function" auf Seite 33.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.2 Switching

$\stackrel{-1}{+\mid} 18$	Rocker 1-2	ON/OFF	1 bit	C	-		T	-	switch	Low
$\stackrel{-1}{+\mid} 58$	Rocker 3-4	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\stackrel{+}{+} \mid 98$	Rocker 5-6	ON/OFF	1 bit	C	-	-	T	-	switch	Low

Figure 54: Rocker "ON/OFF" communication object

$\underline{+\mid} 18$	Push-button 1	ON/OFF	1 bit	C	-	-	T	-	switch	Low
	Push-button 2	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\underline{+}{ }_{\text {\| }} 58$	Push-button 3	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\underline{+\overrightarrow{4}} 78$	Push-button 4	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\stackrel{+}{+} \mid 98$	Push-button 5	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\underline{+\mid} \mid 118$	Push-button 6	ON/OFF	1 bit	C	-	-	T	-	switch	Low

Figure 55: Button "ON/OFF" communication object

Nr.	Name	Object function	Length	Data type	Flags
18,58,	Rocker x				
98.138		Switching			
18.38					
58.78,	Buts x				
98.118,					
138.158			T Switching		

These objects are activated when the "ON/OFF" function is selected in the parameters for each independent pushbutton/rocker.
These objects ($18,38,58,78,98,118,138,158$) transmit a 1 -bit command to the actuator channel and trigger a switching command when the button is pressed.
For further information see „4.3 „ON/OFF" function" auf Seite 34.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.3 Dimming

$\|\overrightarrow{\mathbf{t}}\| 18$	Rocker 1-2	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\|\overrightarrow{\boldsymbol{t}}\| 21$	Rocker 1-2	Dimming	4 bit	C	-	-	T		dimming control	Low
$\|\overrightarrow{+}\| 58$	Rocker 3-4	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\|\overrightarrow{+}\| 61$	Rocker 3-4	Dimming	4 bit	C	-	-	T		dimming control	Low
$\|\overrightarrow{\boldsymbol{+}} \mathbf{\|}\| 98$	Rocker 5-6	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\|\stackrel{\rightharpoonup}{+}\| 101$	Rocker 5-6	Dimming	4 bit	C	-	-	T		dimming control	Low

Figure 56: Rocker "Dimming - ON/OFF" communication object

+\| 18	Push-button 1	ON/OFF	1 bit	C	-	-	T	-	switch	Low
t\| 21	Push-button 1	Dimming	4 bit	C	-	-	T	-	dimming control	Low
+\|38	Push-button 2	ON/OFF	1 bit	C	-	-	T	-	switch	Low
+ ${ }^{\text {\| }} 41$	Push-button 2	Dimming	4 bit	C	-	-	T	-	dimming control	Low
+\| 58	Push-button 3	ON/OFF	1 bit	C	-	-	T	-	switch	Low
+ ${ }^{\text {\| }} 61$	Push-button 3	Dimming	4 bit	C	-	-	T	-	dimming control	Low
+ ${ }^{\text {\| }} 78$	Push-button 4	ON/OFF	1 bit	C	-	-	T	-	switch	Low
+\| 81	Push-button 4	Dimming	4 bit	C	-	-	T	-	dimming control	Low
+ ${ }^{\text {\| }} 98$	Push-button 5	ON/OFF	1 bit	C	-	-	T	-	switch	Low
+\| 101	Push-button 5	Dimming	4 bit	C	-	-	T	-	dimming control	Low
+\|118	Push-button 6	ON/OFF	1 bit	C	-	-	T	-	switch	Low
t\|121	Push-button 6	Dimming	4 bit	C	-	-	T	-	dimming control	Low

Figure 57: Button "Dimming - ON/OFF" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & 18,58, \\ & 98.138 \end{aligned}$	Rocker x				
18.38 58.78, 98.118, 138.158	Button x	Switching	1 bits	DPT_Switching	C, T
$\begin{aligned} & \text { 21.61, } \\ & 101.141 \end{aligned}$	Rocker x				
$\begin{aligned} & \hline 21.41 \\ & 61.81 \\ & 101.121 \\ & 141.161 \end{aligned}$	Button x	Dimming	4 bits	DPT_Switching	C, T
These objects are activated when the "Dimming - Increase (ON)/Decrease (OFF)" function is selected in the parameters for each independent push-button/rocker.					
The objects $(18,38,58,78,98,118,138,158)$ transmit a 1 -bit command to the dimmer actuator channel and trigger a switching command and the objects $(21,41,61,81,101,121,141,161)$ transmit a 4 -bit command to the dimmer actuator channel and trigger a dimming command when the button is pressed.					

$\stackrel{+13}{ }$	Rocker 1-2	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\stackrel{+1}{+4} 18$	Rocker 1-2	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\stackrel{+1}{4} 21$	Rocker 1-2	Dimming	4 bit	C	-	-	T	-	dimming control	Low
$\stackrel{+1}{+1} 53$	Rocker 3-4	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\stackrel{+1}{+4} 58$	Rocker 3-4	ON/OFF	1 bit	C	-	-	T	-	switch	Low
	Rocker 3-4	Dimming	4 bit	C	-	-	T	-	dimming control	Low
$\stackrel{+1}{+1} 93$	Rocker 5-6	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
$\stackrel{\mid 1}{+198}$	Rocker 5-6	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\stackrel{-3 \mid 101 ~}{\text { c }}$	Rocker 5-6	Dimming	4 bit	C	-	-	T	-	dimming control	Low

Figure 58: Rocker "Dimming - Toggle switch" communication object

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

$\underline{-\vec{*}} \mid 13$	Push-button 1	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
- ${ }_{\text {¢ }}^{\text {\| }} 18$	Push-button 1	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\stackrel{-{ }_{-} \mid 21}{ }$	Push-button 1	Dimming	4 bit	C	-	-	T	-	dimming control	Low
$\underline{-\overrightarrow{+}} \mathbf{3}$	Push-button 2	Status indication ON/OFF	1 bit	c	-	W	T	U	switch	Low
- ${ }_{\boldsymbol{*} \mid} \mid 38$	Push-button 2	ON/OFF	1 bit	c	-	-	T	-	switch	Low
- ${ }_{\boldsymbol{*} \mid} \mathbf{4}$	Push-button 2	Dimming	4 bit	C	-	-	T	-	dimming control	Low
	Push-button 3	Status indication ON/OFF	1 bit	c	-	W	T	U	switch	Low
- ${ }_{\text {¢ }}$ \| 58	Push-button 3	ON/OFF	1 bit	c	-	-	T	-	switch	Low
- ${ }_{\text {+ }} \mid 61$	Push-button 3	Dimming	4 bit	c	-	-	T	-	dimming control	Low
- ${ }_{\boldsymbol{*} \mid} 73$	Push-button 4	Status indication ON/OFF	1 bit	c	-	W	T	U	switch	Low
- ${ }_{\boldsymbol{*}} \mid 78$	Push-button 4	ON/OFF	1 bit	c	-	-	T	-	switch	Low
- ${ }_{\boldsymbol{+}} \mathbf{\| c}$	Push-button 4	Dimming	4 bit	C	-	-	T	-	dimming control	Low
- ${ }_{\text {+ }} \mid 93$	Push-button 5	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
- ${ }_{\boldsymbol{*}} \mid 98$	Push-button 5	ON/OFF	1 bit	C	-	-	T	-	switch	Low
- \vec{H}^{+101}	Push-button 5	Dimming	4 bit	c	-	-	T	-	dimming control	Low
	Push-button 6	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
	Push-button 6	ON/OFF	1 bit	c	-	-	T	-	switch	Low
- $\overrightarrow{+\mid} 121$	Push-button 6	Dimming	4 bit	c	-	-	T	-	dimming control	Low
$\stackrel{+123}{ }$	Push-button 7	Status indication ON/OFF	1 bit	c	-	W	T	U	switch	Low
	Push-button 7	ON/OFF	1 bit	c	-	-	T	-	switch	Low
	Push-button 7	Dimming	4 bit	c	-	\cdot	T	-	dimming control	Low
- ${ }_{+} \mid 153$	Push-button 8	Status indication ON/OFF	1 bit	C	-	W	T	U	switch	Low
- $\overrightarrow{+} \mid 158$	Push-button 8	ON/OFF	1 bit	C	-	-	T	-	switch	Low
$\stackrel{\rightharpoonup}{+}{ }^{+161}$	Push-button 8	Dimming	4 bit	c	-	\cdot	T	-	dimming control	Low

Figure 59: Button "Dimming - Toggle switch" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & 13.53 \\ & 93.133 \end{aligned}$	Rocker x				
$\begin{aligned} & 13.33, \\ & 53.73, \\ & 93.113, \\ & 133.153 \end{aligned}$	Button x	ON/OFF status indication	1 bits	DPT_Switching	C, W, T, U
$\begin{aligned} & 18,58, \\ & 98.138 \end{aligned}$	Rocker x				
18.38 58.78, 98.118, 138.158	Button x	Switching	1 bits	DPT_Switching	C, T
$\begin{aligned} & \text { 21.61, } \\ & \text { 101.141 } \end{aligned}$	Rocker x				
$\begin{aligned} & 21.41 \\ & 61.81 \\ & 101.121 \\ & 141.161 \end{aligned}$	Button x	Dimming	4 bits	DPT_Switching	C, T

These objects are activated when the "Dimming - Increase (toggle switch)/Decrease (toggle switch)" function is selected in the parameters for each independent push-button/rocker.
The objects $(18,38,58,78,98,118,138,158)$ transmit a 1 -bit command to the dimmer actuator channel and trigger a switching command and the objects ($21,41,61,81,101,121,141,161$) transmit a 4 -bit command to the dimmer actuator channel and trigger a dimming command when the button is pressed. The objects (13, 33, 53, 73, 93, 113, 133,153) allow the return of the status value for the respective switching command (for linking with a status LED, for example).
For further information see „4.4 „Dimming" Function" auf Seite 35.

| $\\| \vec{t} \mid 22$ | Rocker 1-2 | Brightness value | 1 Byte | C | - | - | T | - | percentage (0.100%) | Low |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\\| \vec{t} \mid 62$ | Rocker 3-4 | Brightness value | 1 Byte | C | - | - | T | - | percentage (0.100%) | Low |
| $\\| \overrightarrow{\boldsymbol{t}} \mid 102$ | Rocker 5-6 | Brightness value | 1 Byte | C | - | - | T | - | percentage (0.100%) | Low |

Figure 60: Rocker "Dimming - dimming value" communication object

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

\|푼 22	Push-button 1	Brightness value	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
$\stackrel{-1}{+} \mid 42$	Push-button 2	Brightness value	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
$\stackrel{+1}{+} \mid 62$	Push-button 3	Brightness value	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
	Push-button 4	Brightness value	1 Byte	C	-	-	T	-	percentage (0.100%)	Low
$\underline{-1} 102$	Push-button 5	Brightness value	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
- 하\| 122	Push-button 6	Brightness value	1 Byte	c	-	-	T	-	percentage (0.100\%)	Low
- 가\| 142	Push-button 7	Brightness value	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
$\stackrel{-1}{+} \mid 162$	Push-button 8	Brightness value	1 Byte	C	\cdot	\cdot	T	-	percentage (0.100\%)	Low

Figure 61: Button "Dimming - dimming value" communication object

Nr.	Name	Object function	Length	Data type	Flags
22.62,	Rocker x				
102.142		Dimming value	1 byte	DPT_Percentage $(0-100 \%)$	C, T
22.42,					
62.82,	Button x				
102.122					
142.162					
These objects are activated when the "Dimming - dimming value" function is selected in the parameters for each independent push-button/rocker.					
The objects (22, 42, 62, 82, 102, 122, 142, 162) transmit a 1-byte command to the dimmer actuator channel and switch on the lighting at a fixed percentage value when the button is pressed. For further information see „4.4 „Dimming" Function" auf Seite 35.					

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.4 Roller shutter/blind

$\underline{\\|}{ }_{\boldsymbol{H}} 18$	Rocker 1-2	Up/down	1 bit	C	-	-	T	-	up/down	Low
$\stackrel{\mid+19}{\boldsymbol{\epsilon}} 19$	Rocker 1-2	Stop (short press)	1 bit	C	-	-	T	-	trigger	Low
$\stackrel{\|r\|}{\boldsymbol{\xi}}$ \| 58	Rocker 3-4	Up/down	1 bit	C	-	-	T	-	up/down	Low
$\stackrel{\\|}{\boldsymbol{H}} \mathbf{5 9}$	Rocker 3-4	Stop (short press)	1 bit	C	-	-	T	-	trigger	Low
$\stackrel{\|+\| 98}{\boldsymbol{\epsilon}}$	Rocker 5-6	Up/down	1 bit	C	-	-	T	-	up/down	Low
$\stackrel{-\vec{*}}{ } \mid 99$	Rocker 5-6	Stop (short press)	1 bit	C	-	-	T	-	trigger	Low

Figure 62: Rocker "Shutter/blind" communication object

\| 18	Push-button 1	
-19	Push-button 1	
\|	38	Push-button 2
! 39	Push-button 2	
\| 58	Push-button 3	
! 59	Push-button 3	
! 78	Push-button 4	
! 79	Push-button 4	
\| 98	Push-button 5	
'\|99	Push-button 5	
'\| 118	Push-button 6	
!\| 119	Push-button 6	

Up/down
Stop (short press)

1 bit	C	-	-	T	-	up/down	Low
1 bit	C	-	-	T	-	trigger	Low
1 bit	C	-	-	T	-	up/down	Low
1 bit	C	-	-	T	-	trigger	Low
1 bit	C	-	-	T	-	up/down	Low
1 bit	C	-	-	T	-	trigger	Low
1 bit	C	-	-	T	-	up/down	Low
1 bit	C	-	-	T	-	trigger	Low
1 bit	C	-	-	T	-	up/down	Low
1 bit	C	-	-	T	-	trigger	Low
1 bit	C	-	-	T	-	up/down	Low
1 bit	C	-	-	T	-	trigger	Low

Figure 63: Button "Shutter/blind" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & 18.58, \\ & 98.138 \end{aligned}$	Rocker x				
$\begin{array}{\|l\|} \hline 18.38, \\ 58.78, \\ 98.118, \\ 138.158 \\ \hline \end{array}$	Button x	Up/down	1 bits	DPT_Up/Down	C, T
$\begin{aligned} & 19.59 \\ & 99.139 \end{aligned}$	Rocker x				
$\begin{aligned} & \text { 19.39, } \\ & \text { 59.79, } \\ & 99.119, \\ & 139.159 \end{aligned}$	Button x	Slat Step/Stop (step)	1 bits	DPT_Step	C, T
$\begin{aligned} & \hline 22.62, \\ & 102.142 \end{aligned}$	Rocker x				
$\begin{array}{\|l\|} \hline 22.42, \\ 62.82, \\ 102.122 \\ 142.162 \\ \hline \end{array}$	Button x	Position in \%	1 byte	DPT_Percentage	C, T
$\begin{aligned} & \hline 23.63 \\ & 103.143 \end{aligned}$	Rocker x				
$\begin{array}{\|l\|} \hline 23.43, \\ 63.83, \\ 103.123 \\ 143.163 \end{array}$	Button x	Slat angle in \%	1 byte	DPT_Percentage	C, T

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

These objects are activated when the "Shutter/blind" function is selected in the parameters for each independent push-button/rocker.
The objects $(18,38,58,78,98,118,138,158)$ transmit a 1-bit command to the shutter/roller actuator channel and move the hanging up/down when the button is pressed.
The objects $(19,39,59,79,99,119,139,159)$ transmit a 1 -bit command to the shutter/roller actuator channel and stop the shutter/blind movement or gradually change the position of the hanging.
The objects (22, 42, 62, 82, 102, 122, 142, 162) transmit a 1-byte command to the shutter/roller actuator channel and and the position of the hanging.
The objects $(23,43,63,83,103,123,143,163)$ transmit a 1-byte command to the shutter/roller actuator channel and gradually change the position of the slats.
For further information see „4.5 Funktion „Rollladen/Jalousien"" auf Seite <?>.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.5 Timer

$\stackrel{\|c\|}{ } \mid 18$	Push-button 1	Timer	1 bit	C	-	-	T	-	start/stop	Low
	Push-button 2	Timer	1 bit	C	-	-	T	-	start/stop	Low
$\stackrel{\rightharpoonup}{\mathbf{t}} \mid 58$	Push-button 3	Timer	1 bit	C	-	-	T	-	start/stop	Low
- $\overrightarrow{\boldsymbol{H} \mid 78}$	Push-button 4	Timer	1 bit	C	-	-	T	-	start/stop	Low
	Push-button 5	Timer	1 bit	C	-	-	T	-	start/stop	Low
$\stackrel{+1}{+\mid 18}$	Push-button 6	Timer	1 bit	C	-	-	T	-	start/stop	Low

Figure 64: "Timer" communication object
i The "Timer" function is only available when the using mode is as an independent pushbutton.

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & \text { 18.38, } \\ & 58.78, \\ & 98.118, \\ & 138.158 \end{aligned}$	Button x	Timer	1 bits	DPT_start/stoppr	C, T
These objects are activated when the "Timer" function is selected in the parameters for each independent pushbutton/rocker.					
The objects $(18,38,58,78,98,118,138,158)$ transmit a 1 -bit command to the actuator channel and start (1 -command) or stop (0 -command) the time set in the actuator channel when the button is pressed. This can be used, for example, to switch on the lighting in a staircase for a certain amount of time					
For further information see „4.6 „Timer" function" auf Seite 49.					

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button 3-fold multifunctional push-button; 4-fold multifunctional push-button

Berker

7.3.6 Value 1 byte

$\stackrel{\\|}{\boldsymbol{*}} \mid 22$	Rocker 1-2	Value (0-255)	1 Byte	C	-	-	T	-	counter pulses (0.255) Low
$\stackrel{+}{\boldsymbol{\epsilon}}$ \| 62	Rocker 3-4	Value (0-255)	1 Byte	C	-	-	T	-	counter pulses (0.255) Low
$\stackrel{\text { \| }}{\boldsymbol{t}}$ \| 102	Rocker 5-6	Value in \%	1 Byte	C	-	-	T	-	percentage (0.100\%) Low

Figure 65: Rocker "Value 1 byte" communication object

$\|\overrightarrow{\mathbf{c}}\| 22$	Push-button 1
$\|\overrightarrow{\mathbf{c}}\| 42$	Push-button 2
$\|\overrightarrow{\mathbf{t}}\| 62$	Push-button 3
$\|\overrightarrow{\mathbf{t}}\| 82$	Push-button 4
$\|\overrightarrow{\mathbf{t}}\| 102$	Push-button 5
$\|\overrightarrow{\mathbf{t}}\| 122$	Push-button 6

Value $(0-255)$	1 Byte	C	-	-	T
Value $(0-255)$	1 Byte	C	-	-	T
Value $(0-255)$	1 Byte	C	-	-	T
Value $(0-255)$	1 Byte	C	-	-	T
Value in \%	1 Byte	C	-	-	T

counter pulses (0.255) Low counter pulses (0.255) Low counter pulses (0.255) Low counter pulses (0.255) Low percentage (0.100\%) Low percentage (0.100%) Low

Figure 66: Button "Value 1 byte" communication object

Nr.	Name	Object function	Length	Data type	Flags
22.62,	Rocker x			DPT_Percentage (0-100	
102.142		Value in \%	byte	\%) DPT_Counting pulse	C, T
22.42,		Value (0-255)			
62.82,	Button x				
102.122					
142.162					

These objects are activated when the "Value 1 byte" function is selected in the parameters for each independent push-button/rocker.
The objects $(22,42,62,82,102,122,142,162)$ transmit a 1-byte command to a switching actuator channel and switch the lighting on at a defined \% value or value $(0-255)$ when the button is pressed.
For further information see „4.7 „Value 1 byte" function" auf Seite 50.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.7 Value 2 bytes

$\stackrel{-4}{ } \mid 24$	Rocker 1-2	Value (0-65535)	2 Byte	C	-	-	T	-	pulses	Low
$\stackrel{-4}{\mathbf{+}} 64$	Rocker 3-4	Temperature	2 Byte	C	-	-	T	-	temperature (${ }^{\circ} \mathrm{C}$)	Low
$\underline{+1} 104$	Rocker 5-6	Luminosity	2 Byte	C	-	-	T	-	lux (Lux)	Low

Figure 67: Rocker "Value 2 bytes" communication object

$\underline{+} \mid 24$	Push-button 1	Value (0-65535)	2 Byte	C	-	-	T	-	pulses	Low
$\stackrel{+}{+} 44$	Push-button 2	Value (0-65535)	2 Byte	C	-	-	T	-	pulses	Low
$\stackrel{+}{\boldsymbol{t}} \mathbf{\|} 64$	Push-button 3	Temperature	2 Byte	C	-	-	T	-	temperature (${ }^{\circ} \mathrm{C}$)	Low
$\stackrel{+}{\boldsymbol{\epsilon}} \mid 84$	Push-button 4	Temperature	2 Byte	C	-	-	T	-	temperature (${ }^{\circ} \mathrm{C}$)	Low
$\stackrel{+}{\boldsymbol{t}} \mid 104$	Push-button 5	Luminosity	2 Byte	C	-	-	T	-	lux (Lux)	Low
$\stackrel{+}{\boldsymbol{t}} \mid 124$	Push-button 6	Luminosity	2 Byte	C	-	-	T	-	lux (Lux)	Low

Figure 68: Button "Value 2 bytes" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & \hline 24.64, \\ & 104.144 \end{aligned}$	Rocker x				
$\begin{aligned} & \hline 24.44, \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Button x	Value (0-65535)	2 byte	DPT_Pulse	C, T
$\begin{aligned} & \hline 24.64, \\ & 104.144 \end{aligned}$	Rocker x				
$\begin{aligned} & 24.44, \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Button x	Temperature	2 byte	$\begin{aligned} & \text { DPT_Temperature } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	C, T
$\begin{aligned} & \text { 24.64, } \\ & 104.144 \end{aligned}$	Rocker x				
$\begin{aligned} & \text { 24.44, } \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Button x	Brightness	2 byte	DPT_Lux (Lux)	C, T

These objects are activated when the "Value 2 bytes" function is selected in the parameters for each independent push-button/rocker.
The objects (24, 44, 64, 84, 104, 124, 144, 164 - value) transmit a 2-byte command to a switching actuator channel and switch the lighting on at a defined value when the button is pressed.
The objects (24, 44, 64, 84, 104, 124, 144, 164 -temperature) transmit a 2-byte command to a thermostat and change the set temperature, for example, when the button is pressed.
The objects (24, 44, 64, 84, 104, 124, 144, 164 - brightness) transmit a 2-byte command to a dimming actuator channel and switch the lighting on at a defined brightness value when the button is pressed.
For further information see „4.8 „Value 2 bytes" function" auf Seite 52

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.8 Thermostat extension

- ${ }_{\text {+ }} \mid 18$	Rocker 1-2	Presence	1 bit	C	-	-	T	-	switch	Low
$\stackrel{-}{4} \mid 62$	Rocker 3-4	Setpoint selection	1 Byte	C	-	-	T	-	HVAC mode	Low
$\stackrel{+1}{+\mid} 104$	Rocker 5-6	Override setpoint	2 Byte	C	-	-	T	-	temperature difference Low	
$\stackrel{-1}{+\mid} 109$	Rocker 5-6	Override setpoint status	2 Byte	C	-	W	T	U	temperature	

Figure 69: Rocker "Thermostat extension" communication object

$\|\overrightarrow{4}\| 22$	Push-button 1	Setpoint selection	1 Byte	C	-	-	T	-	HVAC mode	Low
$\|\vec{t}\| 42$	Push-button 2	Setpoint selection	1 Byte	c	-	-	T	-	HVAC mode	Low
$\mid \overrightarrow{\mathbf{q}}$ \| 64	Push-button 3	Override setpoint	2 Byte	C	-	-	T	-	temperature diff	Low
$\|\overrightarrow{4}\| 69$	Push-button 3	Override setpoint status	2 Byte	c	-	w	T	U	temperature diff	Low
$\|\overrightarrow{\mathbf{z}}\| 84$	Push-button 4	Override setpoint	2 Byte	c	-	-	T	-	temperature di	ow
$\|\vec{t}\| 89$	Push-button 4	Override setpoint status	2 Byte	C	-	w	T	u	temperature diff	Low
$\|\overrightarrow{4}\| 93$	Push-button 5	Heating/Cooling - status indication	1 bit	C	-	W	T	u	heating/cooling	Low
$\|\overrightarrow{\mathbf{k}}\| 98$	Push-button 5	Heating/Cooling - changeover	1 bit	C	-	-	T	-	heating/cooling	Low
$\|\overrightarrow{\mathbf{z}}\| 113$	Push-button 6	Heating/Cooling - status indication	1 bit	C	-	w	T	u	heating/cooling	Low
$\mid \overrightarrow{\mathbf{z}}$ \| 118	Push-button 6	Heating/Cooling - changeover	1 bit	C	-	-	T	-	heating/cooling	Low

Figure 70: Button "Thermostat extension" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & \text { 22.62, } \\ & 102.142 \end{aligned}$	Rocker x				
$\begin{aligned} & \hline 22.42, \\ & 62.82, \\ & 102.122 \\ & 142.162 \end{aligned}$	Button x	Override setpoint	1 byte	DPT_HVAC Mode	C, T
$\begin{aligned} & 13.53 \\ & 93.133 \end{aligned}$	Rocker x				
13.33, 53.73, 93.113, 133.153	Button x	Heating/cooling status indication	1 bits	DPT_heating/cooling	$\begin{aligned} & \mathrm{C}, \mathrm{~W}, \\ & \mathrm{~T}, \mathrm{U} \end{aligned}$
$\begin{aligned} & \hline 18.58, \\ & 98.138 \end{aligned}$	Rocker x				
18.38, 58.78, 98.118, 138.158	Button x	Heating/coolingchangeover	1 bits	DPT_heating/cooling	C, T
$\begin{aligned} & \hline 24.64, \\ & 104.144 \end{aligned}$	Rocker x				
$\begin{aligned} & 24.44, \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Button x	Setpoin selection	2 byte	DPT_Temperature difference (K)	C, T
$\begin{aligned} & \text { 29.69, } \\ & 109.149 \end{aligned}$	Rocker x				
29.49, 69.89, 109.129 149.169	Button x	Setpoint selection status	2 byte	DPT_Temperature difference (K)	$\begin{aligned} & \mathrm{C}, \mathrm{~W}, \\ & \mathrm{~T}, \mathrm{U} \end{aligned}$

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker
These objects are activated when the "Thermostat extension" function is selected in the parameters for each independent push-button/rocker.
The objects $(22,42,62,82,102,122,142,162)$ transmit a 1-byte command to a thermostat and change the operating mode there (comfort, standby, etc.) when the button is pressed.
The objects $(13,33,53,73,93,113,133,153)$ transmit a 1 -bit command to the bus and show the "Heating or cooling" status, for example, on a display when the button is pressed.
The objects $(18,38,58,78,98,118,138,158)$ transmit a 1 -bit command to a heating actuator and can therefore switch back and forth between heating and cooling mode.
The objects $(24,44,64,84,104,124,144,164)$ transmit a 2-byte command to the bus and cause the temperature setpoint in a thermostat to change when the button is pressed.
The objects $(29,49,69,89,109,129,149,169)$ transmit a 2 -byte command to the bus, indicate the status of the setpoint selection and display the changed set temperature when the button is pressed.

1 The heating system must be equipped for heating and cooling operation.
For further information see „4.9 Function „Room thermostat extension unit" auf Seite 53.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.9 Priority

$\underline{\boldsymbol{*}} \mathbf{\|} \mid 13$	Rocker 1-2	Status indication priority	1 bit	C	-	W	T	U	state	Low
$\stackrel{+}{\boldsymbol{\xi}} \mid 20$	Rocker 1-2	Priority	2 bit	C	-	-	T	-	boolean control	Low
$\stackrel{+}{\boldsymbol{t}} \mathbf{\|} 53$	Rocker 3-4	Status indication priority	1 bit	C	-	W	T	U	state	Low
$\stackrel{+}{\boldsymbol{t}} \mid 60$	Rocker 3-4	Priority	2 bit	C	-	-	T	-	boolean control	Low
$\stackrel{+}{\boldsymbol{\epsilon}} \mid 93$	Rocker 5-6	Status indication priority	1 bit	C	-	W	T	U	state	Low
$\stackrel{+}{\boldsymbol{+}} \mid 100$	Rocker 5-6	Priority	2 bit	C	-	-	T	-	boolean control	Low

Figure 71: Rocker "Priority" communication object

, 13	Push-button 1	Status indication priority
- 20	Push-button 1	Priority
! 33	Push-button 2	Status indication priority
! 40	Push-button 2	Priority
- 53	Push-button 3	Status indication priority
! 60	Push-button 3	Priority
! 73	Push-button 4	Status indication priority
! 80	Push-button 4	Priority
- 93	Push-button 5	Status indication priority
-1 100	Push-button 5	Priority
- 113	Push-button 6	Status indication priority
! 120	Push-button 6	Priority

1 bit	C	-	W	T	U	state	Low
2 bit	C	-	-	T	-	boolean control	Low
1 bit	C	-	W	T	U	state	Low
2 bit	C	-	-	T	-	boolean control	Low
1 bit	C	-	W	T	U	state	Low
2 bit	C	-	-	T	-	boolean control	Low
1 bit	C	-	W	T	U	state	Low
2 bit	C	-	-	T	-	boolean control	Low
1 bit	C	-	W	T	U	state	Low
2 bit	C	-	-	T	-	boolean control	Low
1 bit	C	-	W	T	U	state	Low
2 bit	C	-	-	T	-	boolean control	Low

Figure 72: Button "Priority" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & 13.53 \\ & 93.133 \end{aligned}$	Rocker x				
$\begin{aligned} & 13.33 \\ & 53.73 \\ & 93.113 \\ & 133.153 \end{aligned}$	Button x	Priority status display	1 bits	DPT_Status	$\begin{aligned} & \mathrm{C}, \mathrm{~W}, \\ & \mathrm{~T}, \mathrm{U} \end{aligned}$
$\begin{aligned} & 20.60, \\ & 100.140 \end{aligned}$	Rocker x				
$\begin{aligned} & 20.40, \\ & 60.80 \\ & 100.120 \\ & 140.160 \end{aligned}$	Button x	Priority	2 bits	DPT_Boolean control	C, T

These objects are activated when the "Priority" function is selected in the parameters for each independent pushbutton/rocker.
The objects $(13,33,53,73,93,113,133,153)$ transmit a 1 -bit command to the bus and show the "Priority" status, for example, on a display when the button is pressed.
The objects $(20,40,60,80,100,120,140,160)$ transmit a 2-bit command and switch an actuator channel (shutter/ blind) into forced mode (movement operation of a shutter is locked) when the button is pressed.
For further information see „4.10 „Priority" function" auf Seite 57.

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.10 Scene

$\stackrel{+1}{+} \mid 22$	Rocker 1-2	Scene	1 Byte	C	-	T	scene control	Low
$\stackrel{+1}{+4} 62$	Rocker 3-4	Scene	1 Byte	C	-	T	scene control	Low
$\stackrel{+}{+} \mid 102$	Rocker 5-6	Scene	1 Byte	C	-	T	scene control	Low

Figure 73: Rocker "Scene" communication object

$\stackrel{\rightharpoonup}{\boldsymbol{t}} \mid 22$	Push-button 1	Scene	1 Byte	C	-	-	T	-	scene control	Low
$\stackrel{+}{\mathbf{+}} \mid 42$	Push-button 2	Scene	1 Byte	C	-	-	T	-	scene control	Low
$\stackrel{+}{\mathbf{t}} \mid 62$	Push-button 3	Scene	1 Byte	C	-	-	T	-	scene control	Low
$\stackrel{\|+\|}{\text { \| }} 82$	Push-button 4	Scene	1 Byte	C	-	-	T	-	scene control	Low
$\stackrel{+}{\mathbf{+}} \mid 102$	Push-button 5	Scene	1 Byte	C	-	-	T	-	scene control	Low
$\stackrel{+}{\mathbf{+}} \mid 122$	Push-button 6	Scene	1 Byte	C	-	-	T	-	scene control	Low

Figure 74: Button "Scene" communication object

Nr.	Name	Object function	Length	Data type	Flags
22.62,	Rocker x				
102.142					
22.42,	Scene		DPT_Scenes		
62.82,					
102.122	Button x		Control		
142.162					
These objects are activated when the "Scene" function is selected in the parameters for each independent push- button/rocker. The objects (22, 42, 62, 82, 102, 122, 142, 162) transmit a 1-byte command to the bus and switch on the respectively stored scene in the actuator channels (light TV 50\%, shutters closed to 75\%) when the button is pressed. For further information see „4.11 „Scene" function" auf Seite 59					

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.11 2-channel mode

$\stackrel{-\vec{t}}{ } \mid 18$	Rocker 1-2	ON/OFF Channel A	1 bit	C	-	-	T	-	switch	Low
$\underline{\|c\|} 27$	Rocker 1-2	Channel B value ($0-255$)	1 Byte	C	-	-	T	-	counter pulses (0.255)	Low
$\stackrel{\|r\| 62}{ }$	Rocker 3-4	Channel A value (\%)	1 Byte	C	-	-	T	-	percentage (0.100%)	Low
- 구\|68	Rocker 3-4	Channel B value (Temperature)	2 Byte	C	-	-	T	-	temperature (${ }^{\circ} \mathrm{C}$)	Low
$\stackrel{\|c\| 104}{ }$	Rocker 5-6	Channel A value (Luminosity)	2 Byte	C	-	-	T	-	lux (Lux)	Low
$\stackrel{\|c\|}{\text { ¢ }} 108$	Rocker 5-6	Channel B value (Luminosity)	2 Byte	C	-	-	T	-	lux (Lux)	Low

Figure 75: Rocker "2-channel mode" communication object

- $\vec{\xi}^{\text {\| }} 18$	Push-button 1	ON/OFF Channel A	1 bit	C	-	-	T	-	switch	Low	
$\underline{-\vec{*}}$ \| 26	Push-button 1	ON/OFF Channel B	1 bit	C	-	-	T	-	switch	Low	
$\stackrel{-\vec{*} \mid 38}{ }$	Push-button 2	ON/OFF Channel A	1 bit	C	-	-	T	-	switch	Low	
$\underline{-1} 46$	Push-button 2	ON/OFF Channel B	1 bit	C	-	-	T	-	switch	Low	
$\stackrel{\rightharpoonup}{\vec{k}} \mid 62$	Push-button 3	Channel A value (0-255)	1 Byte	C	-	-	T	-	counter pulses (0.255)	Low	
$\underline{-\vec{k}} \mid 67$	Push-button 3	Channel B value ($0-255$)	1 Byte	C	-	-	T	-	counter pulses (0.255)	Low	
$\stackrel{\|c\|}{\boldsymbol{*}} \mid 82$	Push-button 4	Channel A value (\%)	1 Byte	C	-	-	T	-	percentage (0..100\%)	Low	
$\stackrel{-\vec{t}}{ } \mid 87$	Push-button 4	Channel B value (\%)	1 Byte	C	-	-	T	-	percentage ($0 . .100 \%$)	Low	
$\stackrel{\rightharpoonup}{\|c\|} 104$	Push-button 5	Channel A value (Temperature)	2 Byte	C	-	-	T	-	temperature (${ }^{\circ} \mathrm{C}$)	Low	
$\stackrel{\text { - }}{\text { ¢ }} 108$	Push-button 5	Channel B value (Temperature)	2 Byte	C	-	-	T	-	temperature (${ }^{\circ} \mathrm{C}$)	Low	
- th $124^{\text {d }}$	Push-button 6	Channel A value (Luminosity)	2 Byte	C	-	-	T	-	lux (Lux)	Low	
$\underline{\\| \rightarrow \mid} 128$	Push-button 6	Channel B value (Luminosity)	2 Byte	c	-	-	T	-	lux (Lux)	Low	

Figure 76: Independent push-button "2-channel mode" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{array}{\|l\|} \hline 18.58, \\ 98.118 \end{array}$	Channel A rocker x	Channel A ON/OFF Channel B ON/OFF	1 bits	DPT_Switching	C, T
$\begin{array}{\|l} \hline 26.66 \\ 106.146 \end{array}$	Channel B rocker x				
$\begin{aligned} & \hline 18.38, \\ & 58.78, \\ & 98.118 \\ & 138.158 \end{aligned}$	Channel A button x				
$\begin{aligned} & \text { 26.46, } \\ & 66.86 \\ & 106.126 \\ & 146.166 \end{aligned}$	Channel B button x				
$\begin{array}{\|l\|} \hline 22.62 \\ 102.142 \end{array}$	Channel A rocker x	Channel A value (0-255) Channel B value (0-255)	1 byte	DPT_Counting pulse (0-255)	C, T
$\begin{array}{\|l\|} \hline 27.67 \\ 107.147 \end{array}$	Channel B rocker x				
$\begin{array}{\|l\|} \hline 22.42, \\ 62.82, \\ 102.122 \\ 142.162 \end{array}$	Channel A button x				
$\begin{array}{\|l\|} \hline 27.47 \\ 67.87 \\ 107.127 \\ 147.167 \\ \hline \end{array}$	Channel B button x				

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & \hline 22.42, \\ & 62.82, \\ & 102.122 \\ & 142.162 \end{aligned}$	Channel A rocker x	Channel A value (\%) Channel B value (\%)	1 byte	DPT_Percentage	C, T
$\begin{aligned} & 27.47 \\ & 67.87 \\ & 107.127 \\ & 147.167 \end{aligned}$	Channel B rocker x				
$\begin{aligned} & 22.42, \\ & 62.82, \\ & 102.122 \\ & 142.162 \end{aligned}$	Channel A button x				
$\begin{aligned} & 27.47 \\ & 67.87 \\ & 107.127 \\ & 147.167 \end{aligned}$	Channel B button x				
$\begin{aligned} & \hline 24.64, \\ & 104.144 \end{aligned}$	Channel A rocker x	Channel A value (temperature) Channel B value (temperature)	2 byte	$\begin{aligned} & \text { DPT_Temperature } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	C, T
$\begin{array}{\|l} \hline 28.68 \\ 108.148 \end{array}$	Channel B rocker x				
$\begin{aligned} & 24.44, \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Channel A button x				
$\begin{aligned} & \hline 28.48, \\ & 68.88, \\ & 108.128 \\ & 148.168 \end{aligned}$	Channel B button x				
$\begin{array}{\|l} \hline 24.64 \\ 104.144 \end{array}$	Channel A rocker x	Channel A value (brightness) Channel B value (brightness)	2 byte	DPT_Lux (Lux)	C, T
$\begin{array}{\|l} \hline 28.68 \\ 108.148 \end{array}$	Channel B rocker x				
$\begin{aligned} & 24.44, \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Channel A button x				
$\begin{array}{\|l\|} \hline 28.48, \\ 68.88, \\ 108.128 \\ 148.168 \\ \hline \end{array}$	Channel B button x				
$\begin{array}{\|l\|} \hline 24.64 \\ 104.144 \end{array}$	Channel A rocker x	Channel A value (0-65535) Channel B value (0-65535)	2 byte	DPT_Pulse	C, T
$\begin{array}{\|l\|} \hline 28.68 \\ 108.148 \end{array}$	Channel B rocker x				
$\begin{aligned} & 24.44, \\ & 64.84, \\ & 104.124 \\ & 144.164 \end{aligned}$	Channel A button x				
$\begin{aligned} & 28.48, \\ & 68.88, \\ & 108.128 \\ & 148.168 \end{aligned}$	Channel B button x				

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

These objects are activated when the function "2-channel mode" is selected for each independent button/rocker. The objects ($18,38,58,78,98,118,138,158$ and $26,46,66,86,106,126,126,166$) transmit a 1 -bit command to the bus and switch on the lighting, for example, via channel A and/or channel B when the button is pressed.
The objects $(22,42,62,82,102,122,142,162$ and $27,47,67,87,107,127,147,167)$ transmit a 1 -byte command to the bus when the button is pressed.
The objects ($24,44,64,84,104,124,144,164$ and $28,48,68,88,108,128,148,168$) transmit a 2-byte command to the bus when the button is pressed.
For further information see „4.12 „2-channel mode" function" auf Seite 62

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.12 Step switch

$\stackrel{\\| \rightarrow \mid}{\text { \| }} 22$	Rocker 1-2	Value (0-255)	1 Byte	C	-	-	T	-	counter pulses (0.255)	Low
$\stackrel{\\|}{\boldsymbol{*}}$ \| 62	Rocker 3-4	Value in \%	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
$\stackrel{+}{\boldsymbol{t}} \mid 102$	Rocker 5-6	Scene	1 Byte	C		-	T	-	scene control	Low

Figure 77: Rocker "Stepping switch" communication object

	Push-button 1	Value (0-255)	1 Byte	C	-	-	T	-	counter pulses (0.255)	Low
$\stackrel{\|l\|}{\boldsymbol{+}} \mathbf{4} 42$	Push-button 2	Value (0-255)	1 Byte	C	-	-	T	-	counter pulses (0..255)	Low
$\stackrel{\|c\|}{\boldsymbol{+}} 62$	Push-button 3	Value in \%	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
	Push-button 4	Value in \%	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
$\stackrel{\|c\|}{ } 102$	Push-button 5	Value in \%	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low
$\stackrel{\|c\|}{\text { ¢ }} 122$	Push-button 6	Value in \%	1 Byte	C	-	-	T	-	percentage (0.100\%)	Low

Figure 78: Button "Stepping switch" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & 22.62 \\ & 102.142 \end{aligned}$	Rocker x	Value (0-255)			
$\begin{aligned} & \text { 22.42, } \\ & 62.82, \\ & 102.122 \\ & 142.162 \end{aligned}$	Button x	Value in \% Scene	1 byte	DPT_Percentage (0-100 \%) DPT_Scene control	C, T
These objects are activated when the "Stepping switch" function is selected in the parameters for each independent button/rocker.					
The objects $(22,42,62,82,102,122,142,162)$ transmit a 1 -byte command to the bus when the button is pressed and increase/decrease the dimming of the lighting by one step with each key-press.					
For further information see „4.13 „Step switch" function"" auf Seite 67					

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button

7.3.13 Deactivate automatic

$\|\vec{t}\| 13$	Rocker 1-2	Automatic control deactivation status	1 bit	C	-	W	T	U	enable	Low
$\|\overrightarrow{+}\| 18$	Rocker 1-2	Automatic control deactivation	1 bit	C	-	-	T	-	enable	Low
$\|\vec{t}\| 53$	Rocker 3-4	Automatic control deactivation status	1 bit	C	-	W	T	U	enable	Low
$\|\overrightarrow{+}\| 58$	Rocker 3-4	Automatic control deactivation	1 bit	C	-	-	T	-	enable	Low
${ }_{\mathbf{k}} \overrightarrow{+} \mid 93$	Rocker 5-6	Automatic control deactivation status	1 bit	C	-	W	T	U	enable	Low
$\|\overrightarrow{+}\| 98$	Rocker 5-6	Automatic control deactivation	1 bit	C	-	-	T	-	enable	Low

Figure 79: Rocker "Automatic mode" communication object

$\|\mid 13$	Push-button 1
$\|\mid 18$	Push-button 1
$\|\mid 33$	Push-button 2
$\|\mid 38$	Push-button 2
$\|\mid 53$	Push-button 3
$\|\mid 58$	Push-button 3
$\|\mid 73$	Push-button 4
$\|\mid 78$	Push-button 4
$\|\mid 93$	Push-button 5
$\|\mid 98$	Push-button 5
$\|\mid 113$	Push-button 6
$\|\mid 118$	Push-button 6

Automatic control deactivation status
Automatic control deactivation

1 bit	C	-	W	T	U
1 bit	C	-	-	T	-
1 bit	C	-	W	T	U
1 bit	C	-	-	T	-
1 bit	C	-	W	T	U
1 bit	C	-	-	T	-
1 bit	C	-	W	T	U
1 bit	C	-	-	T	-
1 bit	C	-	W	T	U
1 bit	C	-	-	T	-
1 bit	C	-	W	T	U
1 bit	C	-	-	T	-

Figure 80: Button "Automatic mode" communication object

Nr.	Name	Object function	Length	Data type	Flags
$\begin{aligned} & 13.53, \\ & 93.133 \end{aligned}$	Rocker x	Automatic control deactivation status	1 bits	DPT_Enable	$\begin{aligned} & \mathrm{C}, \mathrm{~W}, \\ & \mathrm{~T}, \mathrm{U} \end{aligned}$
$\begin{array}{\|l\|} \hline 13.33 \\ 53.73 \\ 93.113, \\ 133.153 \end{array}$	Button x				
$\begin{aligned} & \text { 18.58, } \\ & 98.138 \end{aligned}$	Rocker x	Deactivate automatic	1 bits	DPT_Enable	C, T
18.38, 58.78, 98.118, 138.158	Button x				
These objects are activated when the "Automatic control deactivation" function is selected in the parameters for each independent button/rocker.					
The objects $(13,33,53,73,93,113,133,153)$ transmit a 1 -bit command to the bus and show the "Automatic mode" status, for example, on a display when the button is pressed.					
The objects $(18,38,58,78,98,118,138,158)$ transmit a 1 -bit command when the button is pressed which allows it to start/stop a set automatic mode.					
For furthe	informatio	activate automatic fun	ns" functio		

KNX application description

1-fold multifunctional push-button; 2-fold multifunctional push-button
3-fold multifunctional push-button; 4-fold multifunctional push-button
Berker

7.4 "Internal temperature sensor" communication objects

Figure 81: "Internal temperature sensor" communication object

No.	Name	Object function	Length	Data type	Flags
172	Internal temperature sensor	Internal temperature sensor	2 byte	DPT_Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{C}, \mathrm{R}, \mathrm{T}$

This object is activated when the "Sensor" parameter is activated.
This object makes it possible to forward the internally measured temperature value to a thermostat, for example. For further information see „5. „Temperature sensor" function parameters" auf Seite 74

7.5 "External temperature sensor" communication objects

Figure 82: "External temperature sensor" communication object

Nr.	Name	Object function	Length	Data type	Flags
173	External temperature sensor	External temperature sensor	2 byte	DPT_Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{C}, \mathrm{R}, \mathrm{T}$
This object is activated when the "Sensor" parameter is activated. This object makes it possible to forward the externally measured temperature value to a thermostat, for example. For further information see „5. „Temperature sensor" function parameters" auf Seite 74					

8. Appendix

8.1 ETS software characteristics

Product	1gang	2gang	3gang	4gang
Max. number of group addresses	254	254	254	254
Max. number of assignments	255	255	255	255
Objects	173	173	173	173

Table 40: ETS software characteristics

8.2 Technical data

KNX medium
TP 1
Configuration mode
Rated voltage KNX
Current consumption KNX
KNX connection mode
Degree of protection AST user interface

Protection class IP20

Operating temperature
Storage/transport temperature
Standards EN 60669-2-1; EN 60669-1

EN 50428

8.3 Accessories

Bus application unit, flush-mounted
80040001
Labelling field insert Q.x 9498 xx xx

8.4 Warranty

We reserve the right to realise technical and formal changes to the product in the interest of technical progress.
Our products are under warranty within the scope of the statutory regulations.
If you have a warranty claim, please contact the point of sale.

Table of Figures

Figure 1: Bus application unit flush-mounted 6
Figure 2: Device overview 8
Figure 3: "2-fold rocker - S/B/K/Q" rocker division 9
Figure 4: "1-fold rocker - R" rocker division 10
Figure 5: "2-fold rocker - S/B/K/Q" independent push-button division 10
Figure 6: "2-fold rocker - R" independent push-button division 10
Figure 7: General, "Parameters" 15
Figure 8: General "Lock-up" 17
Figure 9: Parameter „Using mode" 18
Figure 10: Alarm 21
Figure 11: LED management, "General" 22
Figure 12: LED management, "Direction LED ON/OFF" 22
Figure 13: LED management, "Individual" 23
Figure 14: LED management, "Global" 24
Figure 15: Push-button 4gang 26
Figure 16: Function type of the independent push-button(s) 27
Figure 17: Function type of the rocker(s) 30
Figure 18: Status LED of the rocker(s) 31
Figure 19: "Toggle switch" function of the push-button(s) 33
Figure 20: "Function by press/on release" parameters 34
Figure 21: "Dimming" Function 35
Figure 22: "Shutter/blind" function 38
Figure 23: "Short - Long - Short" operating concept 40
Figure 24: "Long - Short" operating concept 42
Figure 25: "Short - Long" using mode 44
Figure 26: "Long - Short or Short" operating concept 46
Figure 27: "Timer" function 49
Figure 28: Function of the "Value 1 byte" independent push-button 50
Figure 29: Function of the "Value 2 bytes" independent push-button 52
Figure 30: Function of the "Room thermostat extension unit" independent push-button 53
Figure 31: "Priority" function 57
Figure 32: "Scene" function 59
Figure 33: Scene call-up 60
Figure 34: Set new scene parameters 60
Figure 35: Saving new scene parameters 61
Figure 36: "2-channel mode function" parameter 62
Figure 37: Channel A or Channel B operating concept 63
Figure 38: Channel A and Channel B operating concept 63
Figure 39: "Step switch" function" 67
Figure 40: Rocker function selection 70
Figure 41: Stepping switch function 71
Figure 42: "Pass through" stepping switch function 71
Figure 43: "Flow and return" stepping switch function 72
KNX application description
Figure 44: "Automatic control deactivation" parameter 73
Figure 45: Internal temperature sensor function parameters 74
Figure 46: External temperature sensor function parameters 75
Figure 47: "Information" parameter window 77
Figure 48: "General - Lock-up" communication objects 78
Figure 49: "Alarm" communication object 78
Figure 50: "LED management" communication objects 79
Figure 51: "Status LED single button/rocker" communication objects 80
Figure 52: Rocker "Toggle switch" communication object 81
Figure 53: Independent push-button "Toggle switch" communication object 81
Figure 54: Rocker "ON/OFF" communication object 82
Figure 55: Button "ON/OFF" communication object 82
Figure 56: Rocker "Dimming - ON/OFF" communication object 83
Figure 57: Button "Dimming - ON/OFF" communication object 83
Figure 58: Rocker "Dimming - Toggle switch" communication object 83
Figure 59: Button "Dimming - Toggle switch" communication object 84
Figure 60: Rocker "Dimming - dimming value" communication object 84
Figure 61: Button "Dimming - dimming value" communication object 85
Figure 62: Rocker "Shutter/blind" communication object 86
Figure 63: Button "Shutter/blind" communication object 86
Figure 64: "Timer" communication object 88
Figure 65: Rocker "Value 1 byte" communication object 89
Figure 66: Button "Value 1 byte" communication object 89
Figure 67: Rocker "Value 2 bytes" communication object 90
Figure 68: Button "Value 2 bytes" communication object 90
Figure 69: Rocker "Thermostat extension" communication object 91
Figure 70: Button "Thermostat extension" communication object 91
Figure 71: Rocker "Priority" communication object 93
Figure 72: Button "Priority" communication object 93
Figure 73: Rocker "Scene" communication object 94
Figure 74: Button "Scene" communication object 94
Figure 75: Rocker "2-channel mode" communication object 95
Figure 76: Independent push-button "2-channel mode" communication object 95
Figure 77: Rocker "Stepping switch" communication object 98
Figure 78: Button "Stepping switch" communication object 98
Figure 79: Rocker "Automatic mode" communication object 99
Figure 80: Button "Automatic mode" communication object 99
Figure 81: "Internal temperature sensor" communication object 100
Figure 82: "External temperature sensor" communication object 100

List of Tables

Table 1: ETS Software version 5
Table 2: ETS Application designations 5
Table 3: General, "Parameters" 16
Table 4: General "Lock-up" 17
Table 5: Parameter „Using mode" 18
Table 6: "Configuration second level" parameter 19
Table 7: Alarm 21
Table 8: LED management, "Status LED" 22
Table 9: LED management, "Individual" 23
Table 10: LED management, "Global" 25
Table 11: "Button function type" parameters 28
Table 12: "Rocker function type" parameters 30
Table 13: "Status LED" parameters of the rocker(s) 32
Table 14: "Function by press/on release" ON/OFF parameters 34
Table 15: Rocker/button "Dimming" function 35
Table 16: "Shutter/blind" rocker/button using mode 38
Table 17: Parameters in the Hager using mode 39
Table 18: Blind, shutter and slat position parameters 39
Table 19: Time setting under "Short - Long - Short" 40
Table 20: Blind, shutter and slat position parameters 41
Table 21: Time setting under "Long - Short" 42
Table 22: Blind, shutter and slat position parameters 43
Table 23: Time setting under "Short - Long" 44
Table 24: Blind, shutter and slat position parameters 45
Table 25: Time setting under "Long - Short or Short" 46
Table 26: Blind, shutter and slat position parameters 47
Table 27: Function of the "Value 1 bytes" rocker/independent push-button 50
Table 28: Function of the "Value 2 bytes" rocker/independent push-button 52
Table 29: Function of "Rocker/room thermostat extension unit" button 53
Table 30: Function of the "Thermostat extension" rocker/independent push-button 54
Table 31: "Priority" 2-bit communication object 57
Table 32: Function of the "Priority" rocker/independent push-button 57
Table 33: Structure of 1-byte scene communication object 59
Table 34: Function of the "Scene" rocker/independent push-button 59
Table 35: Function of the "2-channel mode" rocker/button 62
Table 36: Function of the "2-channel mode" rocker/button 64
Table 37: Function of the "Stepping switch" rocker/independent push-button 68
Table 38: Stepping switch value processing 70
Table 39: Internal/external temperature sensor function parameters 75
Table 40: ETS software characteristics 101

[^0]: * Default value

[^1]: * Default value

[^2]: * Default value

[^3]: * Default value

[^4]: * Default value

[^5]: * Default value

[^6]: * Default value

[^7]: * Default value

[^8]: * Default value

[^9]: * Default value

[^10]: * Default value

[^11]: * Default value

[^12]: * Default value

[^13]: * Default value

[^14]: * Default value

[^15]: * Default value

[^16]: * Default value

[^17]: * Default value

[^18]: * Default value

[^19]: * Default value

[^20]: * Default value

[^21]: * Default value

[^22]: * Default value

[^23]: * Default value

