Test Report issued under the responsibility of:

Page 1 of 37
TEST REPORT No. 630005.01

Testing procedure and testing location:

$\square \quad$ CB Testing Laboratory:

Testing location/ address \qquad .

Associated CB Test Laboratory:
Testing location/ address \qquad .

Tested by (name + signature) :
Approved by (+ signature). \qquad
$\square \quad$ Testing procedure: TMP
Tested by (name + signature) :
Approved by (+ signature). \qquad ..:

Testing location/ address \qquad .

\boxtimes Testing procedure: WMT

Tested by (name + signature): Alberti Luigi
Witnessed by (+ signature): Silvio Piras
Approved by (+ signature)..........: Silvio Piras
stature .: Silvio Piras

Testing location/ address \qquad : AB Blast s.r.I - Hager Group

Via dell'Artigianato 6 25080 Molinetto di Mazzano (BS) Italy
$\square \quad$ Testing procedure: SMT
Tested by (name + signature) :
Approved by (+ signature) \qquad
Supervised by (+ signature):
Testing location/ address \qquad .:
$\square \quad$ Testing procedure: RMT
Tested by (name + signature).....:
Approved by (+ signature) \qquad
Supervised by (+ signature) :
Testing location/ address \qquad

Summary of testing:

Tests performed (name of test and test clause):

Full test program:

Full test program carried out on switch WXF436B

Samples code:
18-1117; 18-1118; 18-1119; 18-1129; 18-1130; 181131; 18-1155; 18-1156; 18-1157; 18-1158; 181159; 18-1160; 18-1161; 18-1162; 18-1163; 181164; 18-1165; 18-1166; 18-1167; 18-1168; 181169; 18-1170;

Testing location:

AB Plast s.r.I - Hager Group
Via dell'Artigianato 6
25080 Molinetto di Mazzano (BS) Italy

Summary of compliance with National Differences:
No national difference

Copy of marking plate

General product information:
Description of new references

Code	Pattern no.	Description	Rated current (A)	Rated Voltage (V)	Freq. (Hz)	Type of terminal	IP
WXF436B	2	2 Poles switch withe	16 AX	250 V	50	Screwless	IP20
WXF436T	2	2 Poles switch alu	$16 A X$	250 V	50	Screwless	IP20
WXF436N	2	2 Poles switch Black	$16 A X$	$250 V$	50	Screwless	IP20

Page 7 of 37
TEST REPORT No. 630005.01
IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

TRF No. IEC60669_1D

Page 8 of 37
TEST REPORT No. 630005.01
IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	Markings are placed on parts which cannot be removed without the use of a tool		P
8.4	Terminals for phase conductors (supply conductors): identified unless method of connection is of no importance, self evident or indicated on a wiring diagram		P
	Indications not placed on screws or other easily removable part		P
	Terminals associated with any one pole for switches of pattern number 2, 3, 03 and 6/2: similar identification differing from that of terminals associated with other poles		P
8.5	Neutral terminals: N..:		P
	Earthing terminals: [earth symbol]:		P
	Markings not placed on screws or other easily removable parts		P
	Terminals for conductors not forming part of the main function of the switch:		P
	- clearly identified unless their purpose is self evident, or		P
	- indicated in a wiring diagram fixed to the accessory		P
	Identification of equipment terminals may be achieved by:		P
	- their marking with graphical symbols according to IEC 60417 or colours and/or alphanumeric system, or		P
	- their physical dimension or relative location		P
8.6	Switches marked to indicate the switch position: they are so marked that the direction of movement of the actuating member to its different positions or the actual position is clearly indicated.		P
	Switches having more than one actuating member: marking indicates the effect achieved by the operation		N/A
	Marking clearly visible on the front of the switch		P
	Not possible to fix cover, cover plate, or removable actuating members in an incorrect position		P
	Symbols for "on" and "off" not used for indication of switch positions unless clearly indicate the direction of movement of the actuating members		P
8.7	Red colour only for push-button to open the circuit		N/A
8.8	Special precautions necessary to take when installing the switch: details of these and clear information given in an instruction sheet which accompanies the switch		N/A

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

| 8.9 | Marking durable and easily legible. Test: 15 s with
 water and 15 s with petroleum spirit | P |
| :--- | :--- | :--- | :---: |

9	CHECKING OF DIMENSIONS		N/A
	Switches and boxes comply with the appropriate standard sheets, if any		

10	PROTECTION AGAINST ELECTRIC SHOCK		P
10.1	Switches: live parts not accessible		P
	Switches designed to be fitted with pilot lights supplied at voltage other than ELV have means to prevent direct contact with the lamp		N/A
	Test with standard test finger shown in figure 1 of IEC 60529		P
	Switches with thermoplastic or electrometric material: additional test carried out at $35{ }^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$ with a straight unjointed test finger (75 N for 1 min)		P
	Straight unjointed test finger applied to thin-walled knock-outs with a force of 10 N		P
	During the test: switches not deform and no live parts accessible		P
10.2	Knobs, operating levers, push buttons, rockers and the like: of insulating material, unless:		P
	- accessible metal parts separated from metal parts of mechanism by double or reinforced insulation, or		N/A
	- reliably connected to earth		N/A
10.3	Accessible parts of switches which a rated current \leq 16 A are made of insulating material		P
10.3.1	Metal covers or cover plates protected by supplementary insulation made by insulating linings or insulating barriers		N/A
	Insulating linings or insulating barriers:		
	- cannot be removed without being permanently damaged, or designed that		N/A
	- cannot be replaced in an incorrect position; if they are omitted, accessories are rendered inoperable or manifestly incomplete; there is no risk of accidental contact between live parts and metal covers or cover plates; precautions are taken to prevent creepage distances or clearances becoming less than the values specified in clause 23		N/A
10.3.2	Earthing of metal covers or cover plates: connection of low resistance		N/A

Page 10 of 37
TEST REPORT No. 630005.01

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

10.4	Metal parts of mechanism not insulated from live parts: not protrude from enclosure		P
	Switches operated by means of a removable key or similar device: metal parts of mechanism insulated from live parts		N / A
10.5	Metal parts of mechanism not accessible and insulated from accessible metal parts, unless		N / A
	- separated from live parts (creepage distances and clearances have at least twice the value specified in clause 23), or	N / A	
	-reliably connected to earth	N	
10.6	Switches operated by means of a removable key or an intermediate part: key or an intermediate part can only touch parts insulated from live parts		N / A
	key or intermediate part: insulated from metal parts of mechanism, unless		N / A
	creepage distances and clearances between live parts and metal parts of mechanism have at least twice the values specified in clause 23		N / A
10.7	Cord-operated switches: impossible to touch live parts when fitting or replacing the pull cord		

$\mathbf{1 1}$	PROVISION FOR EARTHING		
11.1	Accessible metal parts: provided with, or permanently and reliably connected to, an earthing terminal	P	
11.2	Earthing terminals: with screw clamping or screwless terminals and comply with clause 12	N / A	
	Capacity of earthing terminals not less than that of the corresponding terminals for the supply conductors	P	
	Any additional external earthing terminal has a size suitable for conductors of at least 6 mm 2 (mm		
11.3	Surface-type switches with an enclosure of insulating material, with IP > X0 and more than one cable inlet, are provided for the continuity of the earthing circuit with:		
	-an internal fixed earthing terminal, or	P	
	-adequate space for a floating terminal allowing the connection of an incoming and outgoing conductor	N / A	
11.4	Connection between earthing terminal and accessible metal parts: of low resistance	N / A	
	Test current equal to 1,5 In or 25 A (A):	25	P
	Resistance $\leq 0,05 \Omega(\Omega)$...:	0,006	-

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

12	TERMINALS		P
12.1	General		P
	Switches provided with screw-type terminals or with screwless terminals \qquad	Screwless	P
	Clamping means of terminals: not serve to fix any other components		P
	All the test on terminals, with the exception of the test of 12.3 11, made after the test of 15.1		P
12.2	Terminals with screw clamping for external copper conductors		N/A
12.2.1	Switches provided with terminals which allows the proper connection of copper conductors as shows in table 2		N/A
	Rated current (A) ...		-
	Type of conductor (rigid / flexible):		-
	Smallest / largest cross-sectional area (mm^{2}):		-
	Diameter of largest conductor (mm):		-
	Figure of terminal ..:	1/2/3/4/5	-
	Minimum diameter D (minimum dimensions) of conductor space: required (mm); measured (mm).		N/A
12.2.2	Terminals allow the conductor to be connected without special preparation		N/A
12.2.3	Terminals have adequate mechanical strength		N/A
	Screws and nut for clamping the conductors have metric ISO thread or a comparable thread		N/A
	Screws not of soft metal such as zinc or aluminium		N/A
12.2.4	Terminals resistant to corrosion		N/A
12.2.5	Screw-type terminals clamp the conductor(s) without undue damage	See appended table 12.2.5	N/A
	During the test: conductor not slip out, no break near clamping unit and no damage		N/A
12.2.6	Terminals clamp the conductor reliably between metal surfaces	See appended table 12.2.6	N/A
	During the test: conductor not move noticeably		N/A
12.2.7	Terminals designed or placed that the conductor cannot slip out while the clamping screws or nuts are tightened	See appended table 12.2.7	N/A
	After the test: no wire of the conductor escaped outside the clamping unit thus reducing creepage distances and clearances to values lower than those indicated in clause 23		N/A
12.2.8	Terminals not work loose from their fixing to the switch		N/A

TRF No. IEC60669_1D

Page 12 of 37
TEST REPORT No. 630005.01

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	Torque test:		N/A
	- rated current (A) ..:		-
	- solid rigid copper conductor of the largest crosssectional area (mm^{2}) (table 2)		-
	- torque (Nm) (table 3 or appropriate figures 1, 2, 3, 4) \qquad		-
	Screws and nuts tightened and loosened 5 times. During the test: terminals not work loose and show no damage		N/A
12.2.9	Clamping screws or nuts of earthing terminals: adequately locked against accidental loosening, not possible to loosen them without the aid of a tool		N/A
12.2.10	Earthing terminals: no risk of corrosion		N/A
	Body of brass or other metal no less resistant to corrosion		N/A
	If the body is a part of a frame or enclosure of aluminium alloy, precautions are taken to avoid the risk of corrosion		N/A
12.2.11	Pillar terminals: distance g no less than the value specified in figure 1: required (mm); measured (mm)		N/A
	Mantle terminals: distance g no less than the value specified in figure 5: required (mm); measured (mm)		N/A
12.2.12	Lug terminals:		N/A
	- used only for switches having rated current $\geq 40 \mathrm{~A}$		N/A
	- fitted with spring washers or equally effective locking means		N/A
12.3	Screwless terminals for external copper conductors		P
12.3.1	Screwless terminals of the type suitable for:		
	- for rigid copper conductors only, or		N/A
	- for both rigid and flexible copper conductors (tests carried out with rigid and then repeated with flexible conductors)		P
12.3.2	Screwless terminals provided with clamping units which allow the proper connection of rigid or of rigid and flexible conductors having nominal crosssectional areas as shown in table 7		P
	Rated current (A) ...:	16	-
	Type of conductor (rigid / flexible):	RIGID AND FLEXIBLE	-
	Smallest / largest cross-sectional area (mm^{2}):	1,5/2,5	-
	Diameter of largest rigid conductor (mm):	2,13	-
	Diameter of largest flexible conductor (mm):	2,21	-

Page 13 of 37

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

12.3.3	Screwless terminals allow the conductor to be connected without special preparation		P
12.3.4	Parts of screwless terminals intended for carrying current of materials as specified in 22.5		P
12.3.5	Screwless terminals clamp specified conductors with sufficient contact pressure without undue damage to the conductor		P
	Conductor clamped between metal surfaces		P
12.3.6	It is clear how the connection and disconnection of the conductors is to be made		P
	Disconnection of a conductor require an operation, other than a pull, so that can be made manually with or without a general-purpose tool		P
	It is not possible to confuse the opening for the use of a tool with the opening intended for the conductor		P
12.3.7	Screwless terminals intended for the interconnection of	of two or more conductors:	
	- during insertion, operation of clamping means of one of the conductors is independent of operation of that for the other conductor(s);		P
	- during disconnection, conductors can be disconnected either at the same time or separately;		P
	- each conductor introduced in a separate clamping unit.		P
	It is possible clamp securely any number of conductors up to the maximum as designed. Number of conductors; Nominal cross-sectional area $\left(\mathrm{mm}^{2}\right)$	2x2,5	P
12.3.8	Screwless terminals: adequate insertion obvious and over-insertion prevented		P
	Screwless terminals of switches: undue insertion of the conductor prevented by a stop if further insertion is liable to reduce creepage distances and/or clearances required in table 20 or to influence the mechanism		P
12.3.9	Screwless terminals properly fixed to the switch		P
	Not work loose when conductors are connected or disconnected		P
	Self-hardening resins used to fix terminals not subject to mechanical stress		N/A
12.3.10	Screwless terminals withstand mechanical stresses occurring in normal use	See appended table 12.3.10	P
	During application of the pull conductor not come out of the terminal		P
	Test with apparatus shown in figure 10	See appended table 12.3.10	P

TRF No. IEC60669_1D

Page 14 of 37
TEST REPORT No. 630005.01

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	During the test conductors not move noticeably in the clamping unit		P		
	After these tests: neither terminals nor clamping means have worked loose and conductors show no deterioration	P			
12.3 .11	Screwless terminals withstand electrical and thermal stresses occurring in normal use	See appended table 12.3.11	P		
	After the test: inspection show no changes		P		
	Repetition of test according to 12.3.10: screwless terminals withstand mechanical stresses occurring in normal use	See appended table 12.3.11	P		
	During application of the pull conductor not come out of the terminal	P			
	Test with apparatus shown in figure 10	See appended table 12.3.11	P		
	During the test conductors not move noticeably in the clamping unit	P			
12.3 .12	After these tests: neither terminals nor clamping means have worked loose and conductors show no deterioration	Screwless terminals: connected rigid solid conductor remains clamped, even when deflected during normal installation	See appended table 12.3.12	$\mathrm{P} \quad$	P
:---					

13	CONSTRUCTIONAL REQUIREMENTS		P
13.1	Insulating lining, barriers and like: adequate mechanical strength and secured in a reliable manner	P	
13.2	Switches constructed so as to permit:	P	
	- easy introduction and connection of the conductors in the terminals;	P	
	- correct positioning of the conductors	P	
	- easy fixing of the switch to a wall or in a box	P	
	-adequate space between underside of the base and the surface on which the base is mounted or between the sides of the base and the enclosure (cover or box)	P	
	Surface-type switches: fixing means do not damage insulation of the cable	P	
13.3	Switches classified as design A: permit easy positioning and removal of the cover or cover plate, without displacing the conductors	Covers, cover-plates and actuating members or parts of them intended to ensure protection against electric shock:	

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	- held in place at two or more points by effective fixings		N/A
	- fixed by means of a single fixing, e.g. by a screw, provided that they are located by another means (e.g. by a shoulder)		N/A
	Fixings of covers, cover-plates or actuating members of switches of design A serves to fix the base: there is means to maintain the base in position, even after removal of the covers, coverplates or actuating members		N/A
13.3.1			
	Compliance checked by inspection only		N/A
13.3.2	Covers, cover plates or actuating members whose fixing is not dependent on screws and whose removal is obtained by applying a force in a direction approximately perpendicular to the mounting/supporting surface:		P
	Compliance checked, when their removal may give access, with the standard test finger:		
	to live parts: by the test of 20.4 (verification of the non-removal and the removal)		N/A
	to non-earthed metal parts separated from live parts by creepage distances and clearances according to table 20: by the test of 20.5 (verification of the non-removal and the removal)		P
	only to insulating parts, or earthed metal parts, or metal parts separated from live parts by creepage distances and clearances twice those according to table 20, or live parts of SELV circuits not greater than 25 V a.c.: by the test of 20.6 (verification of the non-removal and the removal)		N/A
13.3.3	Covers, cover-plates or actuating members whose fixing is not dependent on screws and whose removal is obtained by using a tool, in accordance with the manufacturer's information given in an instruction sheet or in a catalogue:		N/A
	Compliance checked, when their removal may give access, with the standard test finger:		N/A
	to live parts: by the test of 20.4 (verification of the non-removal only)		N/A
	to non-earthed metal parts separated from live parts by creepage distances and clearances according to table 20: by the test of 20.5 (verification of the non-removal only)		N/A
	only to insulating parts, or earthed metal parts, or metal parts separated from live parts by creepage distances and clearances twice those according to table 20, or live parts of SELV circuits not greater than 25 V a.c.: by the test of 20.6 (verification of the non-removal only)		N/A

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

13.4	Switches: no free openings in their enclosures according to their IP classification		N/A
13.5	Knobs of rotary switches securely attached to the shaft or part operating the mechanism		N/A
	- axial pull test: 100 N for 1 min		N/A
	- knob of switches having only one direction of operation: turned 100 times in the reverse direction		N/A
	During the test: knob not become detached		N/A
13.6			N/A
	Fixing means not serve any other fixing purpose		N/A
13.7	Combinations of switches, or of switches and socket-outlets, comprising separate bases: correct position of each base ensured		N/A
	Fixing of each base independent of the fixing of the combination to the mounting surface		N/A
13.8	Accessories combined with switches: comply with their standard		N/A
13.9	Surface-type switches with IP > 20 are in according to their classification when fitted with conduits or with sheathed cables		N/A
	Surface-type switches with IPX4 or IPX5 have provisions for opening a drain hole		N/A
	Switches provided with a drain hole: it is not less than 5 mm in diameter, or $20 \mathrm{~mm}^{2}$ in area with a width and a length not less than $3 \mathrm{~mm}$. :		N/A
	Drain hole: effective		N/A
	Lid springs (if any): of corrosion resistant material (bronze or stainless steel)		N/A
13.10	Switches to be installed in a box: conductor ends can be prepared after the box is mounted in position, but before the switch is fitted in the box		N/A
	Base have adequate stability when mounted in the box		N/A
13.11	Surface-type switches with IP > X0, pattern numbers 1,5 and 6 , with more than one inlet opening, provided with:		N/A
	- fixed additional terminal complying with the requirements of clause 12, or		N/A
	- adequate space for a floating terminal		N/A
13.12	Inlet openings: allow the introduction of the conduit or the sheath of the cable		N/A

Page 17 of 37

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	Surface-type switches: intended conduit or protective covering can enter at least 1 mm into the enclosure		N/A
	Inlet openings for conduit entries of surface-type switches: capable of accepting conduit sizes of 16, 20,25 or 32 or a combination of at least two of these sizes not excluding two of the same size		N/A
	Inlet openings for cable entries of surface-type switches: capable of accepting cables having the dimensions specified in table 12 or be as specified by the manufacturer: rated current (A); limits of external diameter of cables min/max (mm)		N/A
13.13	Surface-type switches: provision for back entry (if are intended)		N/A
13.14	Membranes or the like (if provided): replaceable		N/A
13.15	Requirements for membranes in inlet openings		N/A
13.15.1	Membranes reliably fixed and not displaced by the mechanical and thermal stresses occurring in normal use		N/A
	Test on membranes subjected to the ageing treatment specified in 15.1 and fitted with the switches		N/A
	Switches placed at $40^{\circ} \mathrm{C}$ for 2 h . Force of 30 N applied for 5 s by test finger. During the test: no deformation, live parts not accessible		N/A
	Membranes likely to be subjected to an axial pull: axial pull of 30 N applied for 5 s . During the test: membranes not come out		N/A
	After the test: no harmful deformation, cracks or similar damage		N/A
	Test repeated with membranes not subjected to any treatment		N/A
13.15 .2			N/A
	Test on membranes not subjected to the ageing treatment specified in 15.1 and fitted with the switches		N/A
	Switches kept at $-5^{\circ} \mathrm{C}$ for 2 h : possibility to introduce cables of the heaviest type through the membranes		N/A
	After the test: no harmful deformation, cracks or similar damage		N/A
13.16	Flexible cable outlet switches: flexible cable (60245 IEC 66 or 60227 IEC 53 , or as specified by the manufacturer) may enter the switch through a suitable hole, groove or gland \qquad		N/A

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

14	MECHANISM		P
14.1	Actuating member of a switch, when released, automatically take up the position corresponding to that of moving contacts	P	
14.2	Moving contact of switches can come to rest only in "on" and "off" positions	P	
	Intermediate position permissible if:		

TRF No. IEC60669_1D

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	- it corresponds to the intermediate position of the actuating member, and		N / A
	- the insulation between fixed and moving contacts is adequate. Electric strength test as specified in $16.2:$ test voltage a.c. for 1 min (V)......................:	$500 \mathrm{~V} / 750 \mathrm{~V} / 1250 \mathrm{~V} /$ 2000 V	$\mathrm{~N} / \mathrm{A}$
14.3	No undue arcing in slowly operation		P
	Test carried out at the end of the test of clause 19.1: breaking of the circuit 10 times, actuating member moved over a period of 2 s. During the test: no sustained arcing	P	
14.4	Switches of pattern numbers $2,3,03$ and $6 / 2$ make and break all poles substantially simultaneously	N / A	
	Neutral pole of switches of pattern numbers 03 not make after or break before the other poles	N / A	
14.5	Action of the mechanism: independent of the presence of cover or cover plate. Test: no flicker	N / A	
14.6	Cord-operated switches: effecting a change by application and removal a pull not exceeding:	N / A	
	-45 N applied vertically, and	N / A	
	-65 N applied at $45^{\circ} \pm 5^{\circ}$	N / A	

15	RESISTANCE TO AGEING, PROTECTION PROVIDED BY ENCLOSURES OF SWITCHES, AND RESISTANCE TO HUMIDITY	P	
15.1	Resistance to ageing	P	
	Switches and boxes placed for 7 days (168 h) in a heating cabinet at $70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	P	
	- no crack visible after test with normal or corrected vision without additional magnification	P	
	- no sticky or greasy material as a result of heat	P	
	- no trace of cloth (forefinger pressed with 5 N)	P	
15.2	- no other damage as a result of heat	P	
15.2 .1	Protection provided by enclosures of switches	P	
	Protection against access to hazardous parts and against harmful effects due to ingress of solid foreign objects	P	
	Enclosure of the switch provides a degree of protection against access to hazardous parts and against harmful effects due to ingress of solid foreign objects in accordance with the IP classification of the switch	P	
	Glands: torque (Nm) (2/3 of torque applied in 20.3) :		
	Screws of the enclosure: torque (Nm) (2/3 table 3):		-
15.2 .1 .1	Protection against access to hazardous parts	P	
	Appropriate test according to IEC 60529:	IP 2 X	

TRF No. IEC60669_1D

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

15.2.1.2	Protection against harmful effects due to ingress of solid foreign objects		N/A
	Appropriate test according to IEC 60529:	IP 5X	N/A
	Dust not penetrate in quantity to interfere with satisfactory operation or to impair safety		N/A
15.2.2	Protection against harmful effects due to ingress of water		N/A
	Enclosure of switches provide a degree of protection against harmful effects due to ingress of water in accordance with their IP classification		N/A
	Appropriate test according to IEC 60529:	IP X5	N/A
	Flush-type and semi-flush-type switches fixed:		N/A
	- in a test wall using an appropriate box in accordance with the manufacturer's instructions		N/A
	- in a test wall according to figure 27		N/A
	Screws of the enclosure: torque (Nm) (2/3 table 3):		-
	Glands: torque (Nm) (2/3 of torque applied in table 19)		-
	Specimens withstand an electric strength test specified in 16.2 which is started within 5 min of completion of the test		N/A
15.3	Resistance to humidity		P
	Switches proof against humidity which may occur in normal use		P
	Compliance checked by a humidity treatment carried out in a humidity cabinet containing air with relative humidity maintained between 91% and 95%. Specimens kept in the cabinet for:		P
	- 2 days (48 h) for switches with IPX0		P
	- 7 days (168 h) for switches with IP>X0		N/A
	After this treatment: specimens show no damage		P

$\mathbf{1 6}$	INSULATION RESISTANCE AND ELECTRIC STRENGTH	P	
16.1	The insulation resistance measured 1 min after application of 500 V d.c.	See appended table 16.1	P
16.2	Electric strength: a.c. test voltage applied for 1 min	See appended table 16.2	P

17	TEMPERATURE RISE		P
17.1	Switches so constructed that the temperature rise in normal use is not excessive	See appended table 17	P
	No oxidation or any other deterioration of contacts		P
17.2	Switches incorporating or intended to incorporate pilot lights are designed that in normal use temperature of the accessible surface is not excessive	P	

TRF No. IEC60669_1D

IEC 60669-1
Clause
Requirement + Test
Result - Remark
Verdict

18	MAKING AND BREAKING CAPACITY		P
	Switches have adequate making and breaking capacity		P
	- model/type reference ..:	See table "Summary of testing"	-
	- pattern number ...:	See table "Summary of testing"	-
	- rated voltage (V) ...:	250	-
	- rated current (A) ..:	16	-
	- nominal cross-sectional area as for the test of clause 17 (mm^{2})	4	-
18.1	Test with $\cos \varphi 0,3$ alternating current		
	- test voltage (1,1 Vn) (V):	275	-
		20	-
	- 200 operations; rate (operations per minute):	15	-
	- samples number ..:	3	-
	During the test: no sustained arcing		P
	After the test: specimens show no damage		P
18.2	Test with tungsten filament lamps load (switches with $\mathrm{In} \leq 16 \mathrm{~A} / \mathrm{Vn} \leq 250 \mathrm{~V}$ and switches of pattern numbers 3 and 03 with $\mathrm{Vn}>250 \mathrm{~V}$)		P
	- test voltage (Vn) (V) ..:	250	-
	- test current ($\geq 1,2 \mathrm{In}$) (A):	19,2	-
	- number of 200 W tungsten filament lamps:	23	-
	- 200 operations; rate (operations per minute):	15	-
	- samples number ...:	3	-
	During the test: no sustained arcing nor welding of the contacts		P
	After the test: specimens show no damage		P

19	NORMAL OPERATION		P
19.1	Switches withstand without excessive wear or other harmful effect, the mechanical, electrical and thermal stresses occurring in normal use		P
	- model/type reference ...:	WXF436B	-
	- pattern number ...:	2	-
	- nominal cross-sectional area per clause $18\left(\mathrm{~mm}^{2}\right)$	4	-
	- test voltage (Vn) (V) ...	250	-

TRF No. IEC60669_1D

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	- test current (In) ($\cos \varphi 0,6)(\mathrm{A})$...........................	16	-
	- number of operations per table 17:	40000	-
	- rate (operations per minute):	15	-
	- samples number ...:	$3+3$	-
	Reduced electric strength per clause 16	See appended table 19.1	P
	Temperature rise test per clause 17 after normal operation	See appended table 19.1	P
	After the tests the specimens not show:		
	- wear impairing their further use;		P
	- discrepancy between the position of the actuating member (if indicated) and that of the moving contacts		P
	- deterioration of enclosures, insulating lining or barriers;		P
	- seepage of sealing compound		P
	- loosening of electrical or mechanical connections;		P
	- displacement of moving contacts of switches pattern number $2,3,03$ or $6 / 2$		P
	No sustained arcing in slowly operation (sub-clause 14.3)		P
19.2	Switches intended for fluorescent lamp load withstand, without excessive wear or other harmful effect, the electrical and thermal stresses occurring when controlling fluorescent lamp circuits		P
	- model/type reference ..:	WXF436B	-
	- pattern number ...:	2	-
	- nominal cross-sectional area per clause 18 (mm^{2})	4	-
	- rate (operations per minute) :	15	-
	- test voltage (Vn); test current $(\mathrm{In})(\cos \varphi 0,9)$; number of operations with load A	250	-
	- test voltage (Vn); 100 operations with load B :	250	-
	- samples number ..:	$3+3$	-
	During the test: copper wire F not melt, specimens function correctly, no sustained arcing or welding of contacts		P
	Temperature rise test per clause 17 after normal operation	See appended table 19.2	P
	After the tests it is possible to make and break the switch by hand, and specimen not show:		
	- wear impairing their further use;		P

TRF No. IEC60669_1D

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	- discrepancy between the position of the actuating member (if indicated) and that of the moving contacts		P
	- deterioration of enclosures, insulating lining or barriers;		P
	- loosening of electrical or mechanical connections;	P	
	- seepage of sealing compound		P
	-displacement of moving contacts of switches pattern number 2,3 or 6/2	P	

20	MECHANICAL STRENGTH		P
	Switches, boxes and screwed glands have adequate mechanical strength		P
20.1	For all types of switches and for boxes: impact test (9 blows)	See appended table 20.1	P
	After the test: no damage, live parts no become accessible		P
20.2	Bases of surface-type switches first fixed to a cylinder of rigid steel sheet of radius equal to 4,5 times the distance between fixing holes (mm):		N/A
	Bases then fixed to a flat steel sheet		N/A
	Torque applied to fixing screws (Nm):	0,5 Nm / 1,2 Nm	-
	During and after the test: bases show no damage		N/A
20.3	Screwed glands of switches with that have IP code higher than IP20: torque test		N/A
	- diameter of cylindrical metal test rod (mm):		-
	- type of material ..:	metal / moulded material	-
	- torque for 1 min (table 19) (Nm):		-
	After the test: no damage of glands and enclosure of the specimens		N/A
20.4	Force necessary for covers, cover-plates or actuating members to come off or not to come off (accessibility with the test finger to live parts)		N/A
20.4.1	Verification of the non-removal of covers, cover-plates or actuating member		N/A
	Force applied for 1 min in direction perpendicular to the mounting surface \qquad	$40 \mathrm{~N} / 80 \mathrm{~N}$	-
	Covers, cover-plates or actuating members not come off		N/A
	Test repeated on new specimens with a sheet of hard material, $1 \mathrm{~mm} \pm 0,1 \mathrm{~mm}$ thick, fitted around the supporting frame (fig. 19)		N/A
	Covers, cover-plates or actuating members not come off		N/A
	After the test: no damage		N/A

TRF No. IEC60669_1D

Page 24 of 37
TEST REPORT No. 630005.01

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

20.4.2	Verification of the removal of covers, cover-plates or actuating members		P
	Force not exceeding 120 N applied 10 times in direction perpendicular to the mounting / supporting surface: covers, cover-plates or actuating members come off		P
	Test repeated on new specimens with a sheet of hard material, $1 \mathrm{~mm} \pm 0,1 \mathrm{~mm}$ thick, fitted around the supporting frame (fig. 19)		P
	Covers, cover-plates or actuating members come off		P
	After the test: no damage		P
20.5	Force necessary for covers, cover-plates or actuating members to come off or not to come off (accessibility with the test finger to non-earthed metal parts separated from live parts by creepage distances and clearances according to table 20)		N/A
20.4.1	Verification of the non-removal of covers, cover-plates or actuating members		N/A
	Force applied for 1 min in direction perpendicular to the mounting surface \qquad	20 N	-
	Covers or cover-plates not come off		N/A
	Test repeated on new specimens with a sheet of hard material, $1 \mathrm{~mm} \pm 0,1 \mathrm{~mm}$ thick, fitted around the supporting frame (fig. 19)		N/A
	Covers, cover-plates or actuating members not come off		N/A
	After the test: no damage		N/A
20.4.2	Verification of the removal of covers, cover-plates or actuating members		N/A
	Force not exceeding 120 N applied 10 times in direction perpendicular to the mounting / supporting surface: covers, cover-plates or actuating members come off		N/A
	Test repeated on new specimens with a sheet of hard material, $1 \mathrm{~mm} \pm 0,1 \mathrm{~mm}$ thick, fitted around the supporting frame (fig. 19)		N/A
	Covers, cover-plates or actuating members come off		N/A
	After the test: no damage		N/A
20.6	Force necessary for covers, cover-plates or actuating members to come off or not to come off (accessibility to insulating parts, earthed metal parts, live parts of SELV $\leq 25 \mathrm{~V}$ a.c. or metal parts separated from live parts by creepage distances twice those according to table 20)		N/A
20.4.1	Verification of the non-removal of covers, cover-plates or actuating members		N/A
	Force 10 N applied for 1 min in direction perpendicular to the mounting surface: covers, cover-plates or actuating members not come off		N/A

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

	Test repeated on new specimens with a sheet of hard material, $1 \mathrm{~mm} \pm 0,1 \mathrm{~mm}$ thick, fitted around the supporting frame (fig. 19)		N/A
	Covers, cover-plates or actuating members not come off		N/A
	After the test: no damage		N/A
20.4.2	Verification of the removal of covers, cover-plates or actuating members		N/A
	Force not exceeding 120 N applied 10 times in direction perpendicular to the mounting / supporting surface: covers, cover-plates or actuating members come off		N/A
	Test repeated on new specimens with a sheet of hard material, $1 \mathrm{~mm} \pm 0,1 \mathrm{~mm}$ thick, fitted around the supporting frame (fig. 19)		N/A
	Covers, cover-plates or actuating members come off		N/A
	After the test: no damage		N/A
20.7	Test with gauge of figure 20 applied according to figure 21 for verification of the outline of covers, cover-plates or actuating members: distances between face C of gauge and outline of side under test, not decrease	Not complying	-
20.8	Test with gauge according to figure 23 applied as shown in figure $24(1 \mathrm{~N})$: gauge not enter more than 1 mm \qquad	complying	-
20.9	Operating members of cord-operated switch have adequate strength		N/A
	Pull test: pull 100 N for 1 min (normal use); pull of 50 N for 1 min (unfavourable direction). After the test:		N/A
	- switch show no damage		N/A
	- operating member not broken and cord-operated switch still operate		N/A

21	RESISTANCE TO HEAT	P
21.1	Switches kept for 1 h in a heating cabinet at a temperature of $100^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	
	During the test: no change impairing their further use and sealing compound, if any, not flow	P
	After the test: no access to live parts, markings still legible	P
21.2	Parts of insulating material necessary to retain current-carrying parts and parts of the earthing circuit in position: ball-pressure test $\left(1 \mathrm{~h}, 125^{\circ} \mathrm{C}\right)$	See appended table 21.2
P		

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

21.3	Parts of insulating material not necessary to retain current-carrying parts and parts of the earthing circuit in position, even though in contact with them: ball-pressure test $(1 \mathrm{~h})$

See appended table 21.3	P

22	SCREWS, CURRENT-CARRYING PARTS AND CONNECTIONS		P
22.1	Connections withstand mechanical stresses		P
	Thread-forming or thread-cutting screws used only if supplied together with the piece in which they are intended to be inserted		N/A
	thread-cutting screws intended to be used during installation are captive with the relevant part of the accessory		N/A
	Screws and nuts which transmit contact pressure: in engagement with a metal thread		N/A
	Threaded part torque test	See appended table 22.1	N/A
22.2	Screws in engagement with a thread of insulating material: correct introduction into the screw hole or nut ensured		N/A
22.3	Contact pressure: not transmitted through insulating material other than ceramic, pure mica or other material no less suitable unless there is sufficient resiliency in metallic parts		P
22.4	Screws and rivets locked against loosening or turning		N/A
22.5	Current-carrying parts of metal having mechanical strength, electrical conductivity and resistance to corrosion adequate:		P
	- copper;		N/A
	- alloy with at least 58% copper for parts made from cold-rolled sheet or with at least 50% copper for other parts;		P
	- stainless steel with at least 13% chromium and not more than 0,12 \% carbon		N/A
	- steel with electroplated coating of zinc (ISO 2081): service condition ISO no. (1/2/3); IP (X0/X4/X5); thickness ($\mu \mathrm{m}$) \qquad		N/A
	- steel with electroplated coating of nickel and chromium (ISO 1456): service condition ISO no. (2/3/4); IP (X0/X4/X5); thickness ($\mu \mathrm{m}$)		N/A
	- steel with electroplated coating of tin (ISO 2093): service condition ISO no. (2/3/4); IP (X0/X4/X5); thickness ($\mu \mathrm{m}$) \qquad		N/A
	Current-carrying parts subjected to mechanical wear: not of steel with electroplated coating		P

IEC 60669-1

Clause	Requirement + Test	Result - Remark	Verdict

| | Metals having a great difference of electrochemical
 potential: not used in contact with each other | P |
| :--- | :--- | :--- | :---: |
| 22.6 | Contacts subjected to sliding action: of metal
 resistant to corrosion | P |
| 22.7 | Thread-forming screws and thread-cutting screws
 not used for the connection of current-carrying parts | N / A |
| | Thread-forming screws and thread-cutting screws
 used to provide earthing continuity: not necessary to
 disturb the connection and at least two screws are
 used for each connection | N / A |

23	CREEPAGE DISTANCES, CLEARANCES AND DISTANCES THROUGH SEALING COMPOUND		\mathbf{P}
23.1	Creepage distances, clearances and distances through sealing compound no less than the values shown in table 20	See appended table 23.1	P
23.2	Insulating compound: not protrude above the edge of the cavity in which it is contained		P

24	RESISTANCE OF INSULATING MATERIAL TO ABNORMAL HEAT, TO FIRE AND TO TRACKING		P
24.1	Parts of insulating material which might be exposed to thermal stresses due to electric effects and the deterioration of which might impair the safety are not unduly affected by abnormal heat and fire		P
24.1.1	Glow-wire test according to IEC 60695-2-1	See appended table 24.1.1	P
24.2	Parts of insulating material retaining live parts in position of switches with IP>X0: of material resistant to tracking		N/A
	Tracking test with solution A of IEC 60112	See appended table 24.2	N/A
25	RESISTANCE TO RUSTING		P
	Ferrous parts protected against rusting		
	Test: 10 min in carbontetrachloride, trichloroethane or equivalent degreasing agent, $10 \mathrm{~min} 10 \%$ solution of ammonium chloride, 10 min in a box with air saturated with moisture and 10 min at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$:		P
	No signs of rust		P
26	EMC REQUIREMENTS		N/A
26.1	Immunity		N/A
	No immunity tests necessary		N/A
26.2	Emission		N/A
	No emission tests necessary		N/A

12.2.6 TABL	TABLE: pull test (screw terminals)			
	rated current (A) ..:			
	smallest/largest cross-sectional area per table 2 (mm^{2})			
	nominal diameter of thread (mm); torque 2/3 per table 3 (Nm)			
Cross-sectional area (mm^{2})	Number of conductors	Type of conductors (rigid solid / rigid stranded)	Cross-sectional area (mm^{2})	Number of conductors

12.3.10 \quad TAB	TABLE: mechanical stresses occurring in normal use (screwless terminals)					P
	rated current (A) ..			16		-
	largest/smallest cross-sectional area per table 7 (mm^{2}) \qquad			2,5 / 1,5		-
Number of connection (after that conductor subjected to a pull of 30 N for 1 min) / disconnection		Type of conductor (solid / rigid stranded / flexible		Cross-sectional area (mm^{2})		Remarks
5		SOLID				P
5		SOLID				P
5		STRANDED				P
5		STRANDED				P
5		FLEXIBLE				P
5		FLEXIBLE				P
TABLE: test with apparatus shown in figure 11						P
Cross-sectional area (mm ${ }^{2}$)	Type of conductor (solid / rigid stranded / flexible	Diameter of bushing hole per table 9 (mm)	Height H per table 9 (mm)		Mass (kg)	Remarks
2,5	SOLID	9,5	280		0,7	P
1,5	SOLID	6,5	260		0,4	P
2,5	STRANDED	9,5	280		0,7	P
1,5	STRANDED	6,5	260		0,4	P
2,5	FLEXIBLE	9,5	280		0,7	P
1,5	FLEXIBLE	6,5	260		0,4	P
supplementary information: test done on samples:18-1117; 18-1118; 18-1119;						

12.3.11	TABLE: electrical and thermal stresses occurring in normal use				P
Test a)	Test carried out for 1 h connecting rigid solid conductors:				
	test current per table (A):		22		-
	nominal cross-sectional area (mm^{2})		2,5		-
Screwless terminal number		Voltage drop (mV)		Required voltage drop	
1.18-1129 E		8,8		$\leq 15 \mathrm{mV}$	
2. 18-1130 L		8,5		$\leq 15 \mathrm{mV}$	
3. 18-1130 L		9,5		$\leq 15 \mathrm{mV}$	
4. 18-1131 N		9,6		$\leq 15 \mathrm{mV}$	
5. 18-1131 N		8,7		$\leq 15 \mathrm{mV}$	
Test b)	Temperature cycles test) carried out on terminals subjected to Test a):				P
	test current per table (A)		22		-
	nominal cross-sectional area (mm^{2})		2,5		-

TRF No. IEC60669_1D

1,5 6,5 260 0,4 rigid stranded 1,5 6,5 260 0,4 flexible sup \quad ary information: test on 18-1129; 18-1130; 18-1131;

12,3,12	TABLE: deflection test (principle of test apparatus shown in figure 11a)							P
	Test carried out for 1 h connecting rigid solid conductors:							P
	test current (A) (equal rated current):				16			-
	required voltage drop (mV)				≤ 25			-
Type of conductor		Smallest			Largest			Remarks
cross-sectional area per table 9 (mm^{2})		1,5mm			$2,5 \mathrm{~mm}$			
force per table 10 (N)		0,5N			1,0N			
screwless terminal number		1	2	3	1	2	3	
starting point ($\mathrm{X}=$ deflection original point)		X	$\mathrm{X}+10^{\circ}$	$\mathrm{X}+20^{\circ}$	X	X $+10^{\circ}$	$\mathrm{X}+20^{\circ}$	
voltage drop $1^{\text {st }}$ deflection (mV)		12,0	12,8	13,3	8,6	8,9	10,4	P
voltage drop $2^{\text {nd }}$ deflection (mV)		10,7	11,8	12,9	9,0	9,3	10,6	P
voltage drop $3^{\text {rd }}$ deflection (mV)		10,9	11,9	12,1	8,9	9,5	10,8	P
voltage drop $4^{\text {th }}$ deflection (mV)		11,0	11,4	12,0	8,8	9,8	10,7	P
voltage drop $5^{\text {th }}$ deflection (mV)		11,2	11,2	12,4	9,3	9,6	11,2	P
voltage drop $6^{\text {th }}$ deflection (mV)		12,8	11,9	12,6	10,6	9,5	10,9	P
voltage drop $7^{\text {th }}$ deflection (mV)		19,8	15,4	13,5	10,4	10,1	11,2	P
voltage drop $8^{\text {th }}$ deflection (mV)		13,1	12,9	12,1	9,0	8,5	11,5	P
voltage drop $9^{\text {th }}$ deflection (mV)		13,2	11,5	11,7	8,3	8,2	9,9	P
voltage drop $10^{\text {th }}$ deflection (mV)		11,8	10,9	12,1	8,2	8,4	10,2	P
voltage drop $11^{\text {th }}$ deflection (mV)		12,9	11,5	13,3	7,9	8,7	10,3	P
voltage drop $12^{\text {th }}$ deflection (mV)		14,4	11,7	13,6	8,3	8,7	10,5	P

supplementary information: test on 18-1129; 18-1130; 18-1131;

16,1			
Item per table 20	test voltage applied between:	measured $(\mathrm{M} \Omega)$	required (M $\Omega)$
$18-1156$	All poles / body (ON)	>1000	>5
$18-1156$	One pole / all other poles (ON)	>1000	>2
$18-1156$	Terminals connected in on position (OFF)	>1000	>2
$18-1155$	All poles / body (ON)	>1000	>5
$18-1155$	One pole / all other poles (ON)	>1000	>2

$18-1155$	Terminals connected in on position (OFF)	>1000	>2
$18-1157$	All poles / body (ON)	>1000	>5
$18-1157$	One pole / all other poles (ON)	>1000	>2
$18-1157$	Terminals connected in on position (OFF)	>1000	>2
supplementary information:			

16,2	TABLE: electric strength		P
	rated voltage (V) ...:	250	-
item per table 20	test voltage applied between:	flashover / breakdown (Yes/No)	
$18-1155$	All poles / body (ON)	2000	No
$18-1155$	One pole / all other poles (ON)	2000	No
$18-1155$	Terminals connected in on position (OFF)	2000	No
$18-1156$	All poles / body (ON)	2000	No
$18-1156$	One pole / all other poles (ON)	2000	No
$18-1156$	Terminals connected in on position (OFF)	2000	No
$18-1157$	All poles / body (ON)	2000	No
$18-1157$	One pole / all other poles (ON)	2000	No
$18-1157$	Terminals connected in on position (OFF)	No	
supplementary information:		No	

17	TABLE: temperature rise measurements		P
	rated current (A) .. :	16	-
	nominal cross-sectional area (mm^{2}) :	4	-
	terminal screws: torque (Nm) (2/3 table 3) :	N/A	-
	test current per table 15 passed for $1 \mathrm{~h}(\mathrm{~A}) ~: ~$	20	-
	rated voltage of pilot light (V) :	250	-
	Tested sample number .. :	3	
Specimen	Thermocouple location	max, measured temperature rise (K)	allowed temperature rise (K)
18-1155	Temperature on terminals	29,6	45
18-1156	Temperature on terminals	26,5	45
18-1157	Temperature on terminals	27,9	45
supplementary information: Temperature rise on accessible parts : < 5 K			

19,1	TABLE: reduced electric strength after normal operation (clause 19,1)	P

| item per
 table 20 | test voltage applied between: | test voltage (V) | flashover /
 breakdown
 (Yes/No) |
| :--- | :--- | :--- | :--- | | $18-1155$ | All poles / body (ON) | 1500 |
| :--- | :--- | :--- |
| $18-1155$ | One pole / all other poles (ON) | 1500 |
| $18-1155$ | Terminals connected in on position (OFF) | 1500 |
| $18-1156$ | All poles / body (ON) | 1500 |
| $18-1156$ | One pole / all other poles (ON) | 1500 |
| $18-1156$ | Terminals connected in on position (OFF) | 1500 |
| $18-1157$ | All poles / body (ON) | 1500 |
| $18-1157$ | One pole / all other poles (ON) | No |
| $18-1157$ | Terminals connected in on position (OFF) | No |
| $18-1158$ | All poles / body (ON) | 1500 |
| $18-1158$ | One pole / all other poles (ON) | No |
| $18-1158$ | Terminals connected in on position (OFF) | 1500 |
| $18-1159$ | All poles / body (ON) | 1500 |
| $18-1159$ | One pole / all other poles (ON) | 1500 |
| $18-1159$ | Terminals connected in on position (OFF) | 1500 |
| $18-1160$ | All poles / body (ON) | 1500 |
| $18-1160$ | One pole / all other poles (ON) | 1500 |
| $18-1160$ | Terminals connected in on position (OFF) | No |
| supplementary information: | 1500 | No |

$\left.\begin{array}{|l|l|c|}\hline 19,1 & \begin{array}{l}\text { TABLE: temperature rise measurements at terminals after normal operation } \\ \text { (clause 19,1) }\end{array} & \mathrm{P} \\ \hline & \text { test current }(\ln) \text { passed for } 1 \mathrm{~h}(\mathrm{~A}) \ldots \ldots \ldots \ldots \ldots \ldots \ldots ~ & 10\end{array}\right]-\quad$.

Specimen	Thermocouple location	max, measured temperature rise (K)	allowed temperature rise (K)
$18-1155$	$1-2-3-4$	28,4	45
$18-1156$	$1-2-3-4$	29,4	45
$18-1157$	$1-2-3-4$	25,1	45
$18-1158$	$1-3$	19,2	45
$18-1159$	$1-3$	20,5	45
$18-1160$	$2-4$	23,8	45
supplementary information: test on			

19,2	TABLE: temperature rise measurements at terminals after test with fluorescent lamp load (clause 19,2)		P
	test current (In) passed for $1 \mathrm{~h}(\mathrm{~A}) \ldots \ldots$	16	-

Specimen	Thermocouple location	max, measured temperature rise (K)	allowed temperature rise (K)
$18-1161$	$1-2-3-4$	25,8	45
$18-1162$	$1-2-3-4$	23,7	45
$18-1163$	$1-2-3-4$	25,9	45
$18-1164$	$1-3$	26,0	45
$18-1165$	$1-3$	20,4	45
$18-1166$	$2-4$	18,9	45
supplementary information:			

20,1	TABLE: impact test			
part of enclosure tested per table 18 (A, B, C, D)	blows per part	height of fall (mm)	comments	
A	5	100	P	
B	4	100	P	

21,2	TABLE: ball pressure test of thermoplastic materials			P
	allowed impression diameter (mm)		$\leq 2 \mathrm{~mm}$	-
part under test		material designation / manufacturer	test temperature $\left({ }^{\circ} \mathrm{C}\right)$	impression diameter (mm)
	117_21	W0C0025_21 Policarbonate RAL7011_Dark grey	y 125	1,1
	268_21	Wolicarbonate RAL7011_Dark grey	125	1,1
	308_00	$\begin{aligned} & \hline \text { W0C0010_13 } \\ & \text { PC RAL7035 } \end{aligned}$	125	1,0
supplementary information: test on : 18-1167; 18-1168; 18-1169;				

21,3	TABLE: ball pressure test of thermoplastic materials	P		
	allowed impression diameter (mm) :	$\leq 2 \mathrm{~mm}$	-	
part under test	material designation / manufacturer	test temperature $\left({ }^{\circ} \mathrm{C}\right)^{(1)}$	impression diameter (mm)	
$\mathrm{w} 191780 _00$		W0C0025_80	70	0,8

supplementary information: test on : 18-1167; 18-1168; 18-1169;
${ }^{(1)} 70{ }^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}+$ highest temperature rise determined during the test of clause 17

22,1	TABLE: threaded part torque test	N/A			
threaded part identification	diameter of thread (mm)	column number $(\mathrm{I}, \mathrm{II}$, or III)	applied torque (Nm)	times $(5 / 10)$	no damage

23,1	TABLE: creepage distances, clearances and distances through sealing compound						P
	rated voltage (V) ... :		16 A				-
item per table 20	creepage distance dcr, clearance cl and distance through sealing compound dtsc at/of:	$\left.\begin{gathered} \text { required } \\ \mathrm{cl} \\ (\mathrm{~mm}) \end{gathered} \right\rvert\,$	$\begin{gathered} \mathrm{cl} \\ (\mathrm{~mm}) \end{gathered}$	required dcr (mm)	$\begin{gathered} \mathrm{dcr} \\ (\mathrm{~mm}) \end{gathered}$	required dtsc (mm)	$\begin{aligned} & \mathrm{dtsc} \\ & (\mathrm{~mm}) \end{aligned}$
	Between live parts witch are separated when the contacts are open	≥ 3	>4	≥ 3	>4	≥ 3	N/A
	Between live parts of different polarity	≥ 3	>4	≥ 3	>4	≥ 3	N/A
	Between live parts accessible parts of insulation material,	≥ 3	>4	≥ 3	>4	≥ 3	N/A

$24,1,1$	TABLE: glow-wire test	P	
part under test	material designation / manufacturer	test temperature $\left({ }^{\circ} \mathrm{C}\right)$	remarks
Complete product	PC	850	P
supplementary information: test on 18-1167; 18-1168; 181170;			

24,2 T	TABLE: resistance to tracking		N/A
	number of drops		-
part under test	st \quad material designation / manufacturer	test voltage (V)	flashover / breakdown (Yes/No)
supplementary information: test on			

List of test equipment used:

Clause	Measurement I testing	Testing / measuring equipment / material used	Range used	LastCalibration date位	Calibration due date
8	TIME	W8T0002-01	0-15MIN	09/2016	09/2019
10	GAUGE	w8d0009-03	-	05/2018	05/2019
10	GAUGE	w8d0010-03	-	05/2018	05/2019
10	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
12	ELECTRIC	w8e0003-02	10-40A	11/2018	11/2019
12	ELECTRIC	w8e0011-04	-	11/2018	11/2019
12	ELECTRIC	w8e0004-02	10-40A	11/2018	11/2019
12	ELECTRIC	w8e0002-10	-	11/2018	11/2019
12	EQUIPMENT	w8n0005-05	-	09/2016	09/2020
12	EQUIPMENT	w8n0007-05	-	-	-
12	MASS	w8m0016-01	0,7 Kg	12/2016	12/2019
12	MASS	w8m0015-01	$0,4 \mathrm{Kg}$	12/2016	12/2019
12	TIME	w8t0002-01	$0-15 \mathrm{MIN}$	09/2016	09/2019
12	MASS	W8m0044-01	50 g	02/2018	02/2020
12	MASS	W8m0045-01	100 g	02/2018	02/2020
13	EQUIPMENT	W8m0017-01	0-500N	9/2016	9/2019
13	GAUGE	W8d0005-01	-	9/2016	9/2020
13	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
14	EQUIPMENT	W8a0011-00	-	-	-
14	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
15	TEMPERATURE	W8K0003-04	$0-125^{\circ} \mathrm{C}$	10/2018	10/2019
15	GAUGE	W8D0010-03	-	05/2018	05/2019
16	time	W8T0002-01	0-15MIN	09/2016	09/2019
16	ELECTRIC	W8E0002-06	2000 V	11/2018	11/2019
16	ELECTRIC	W8E0001-06	$500 \mathrm{M} \Omega$	11/2018	11/2019
17	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
17	ELECTRIC	W8E0009-04	-	11/2018	11/2019
17	ELECTRIC	W8E0005-10	-	11/2018	11/2019
17	ELECTRIC	W8E0002-02	10-40A	11/2018	11/2019
18	EQUIPMENT	W8e0004-12	-	11/2018	11/2019
18	EQUIPMENT	W8e0003_12	-	11/2018	11/2019
18	EQUIPMENT	W8e0001_12	-	11/2018	11/2019

TRF No. IEC60669_1D

Page 37 of 37
TEST REPORT No. 630005.01

19	EQUIPMENT	W8e0004-12	-	11/2018	11/2019
19	EQUIPMENT	W8e0003_12	-	11/2018	11/2019
19	EQUIPMENT	W8e0001_12	-	11/2018	11/2019
19	EQUIPMENT	W8e0004-12	-	11/2018	11/2019
19	EQUIPMENT	W8e0003_12	-	11/2018	11/2019
19	EQUIPMENT	W8e0001_12	-	11/2018	11/2019
19	ELECTRIC	W8E0002-06	1500V	11/2018	11/2019
19	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
19	ELECTRIC	W8E0009-04	-	11/2018	11/2019
19	ELECTRIC	W8E0005-10	-	11/2018	11/2019
19	ELECTRIC	W8E0002-02	10-40A	11/2018	11/2019
20	EQUIPMENT	w8n0004-05	-	09/2016	09/2020
20	MASS	w8m0040-01	250 g	09/2016	09/2019
21	TEMPERATURE		$70^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$	10/2018	10/2019
21	MASS	w8n0002-02	20N	04/2018	04/2020
21	MASS	w8n0004-02	20N	02/2018	02/2020
21	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
21	EQUIPMENT	w8d0001-07	OGP	05/2017	05/2019
22	EQUIPMENT	w8n0004-05	-	09/2016	09/2020
22	MASS	w8m0040-01	250g	09/2016	09/2019
24	ELECTRIC	w8e0009-04	-	11/2018	11/2019
24	EQUIPMENT	w8k0002-05	$\begin{aligned} & 650^{\circ} \mathrm{C} \\ & 1850^{\circ} \mathrm{C} \end{aligned}$	09/2016	09/2020
24	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
25	TIME	w8t0002-01	0-15MIN	09/2016	09/2019
25	EQUIPMENT	w8k0003-04	$100^{\circ} \mathrm{C}$	10/2018	10/2019
25	EQUIPMENT	w8k0001-04	$20^{\circ} \mathrm{C}$	10/2018	10/2019

