

The switch actuator receives telegrams via the EIB and switches groups of electrical equipment with its six potential－free independent relay contacts． Various external conductors can be connected．
The application enables switching with revertive signal（feedback），logic operation and timer function．

Database structure：

Application summary：

－Switching RS，LO，TF 206101

区 Binary output 6 gang
区 Switch actuator 6gang 6A RMD

Width： 4 TE； 72 mm Height： 90 mm Depth： 64 mm IP 20
Measurements：
Protection class：
Test symbol：
Operating temperature range：
Fixing method：
instabus EIB supply
Voltage：
Power consumption：
Connection：
External supply
Response following voltage failure：
Response following restart：
Output
Relay manufacturer：
Relay type：
Number：
Switch type：
Switch voltage：
Max．switching current：
Switching capacity：
EIB
$-5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Snap onto DIN rail（excl．Data rail）
24 V DC（＋6 V／－4 V）
150 mW typically
instabus connection and branch off terminal
Software dependent
Software dependent
Matsushita
DE relay
6
Closer，potential－free relay contacts（ μ－contact）
230 V AC
6 A／AC－1
Filament bulbs： 1000 W

Connection：

Fluorescent tubes，uncompensated， $\cos \varphi=0,5$ ：$\quad 500 \mathrm{~W}$
Fluorescent tubes，parallel compensation， $\cos \varphi=1$ ： $2 \times 58 \mathrm{~W} / 14 \mu \mathrm{~F}$ $3 \times 36 \mathrm{~W} / 14 \mu \mathrm{~F}$ $6 \times 18 \mathrm{~W} / 14 \mu \mathrm{~F}$
Fluorescent Duo， $\cos \varphi=1$ ：
Siemens ballast for 58 W fluorescent tubes： 10 pieces
Siemens ballast for 36 W fluorescent tubes： 15 pieces
Siemens ballast for 18 W fluorescent tubes： 15 pieces
Screw－type terminals： $0,2-4 \quad \mathrm{~mm}^{2} \quad$ one wire
$2 \times 0,2-2,5 \mathrm{~mm}^{2} \quad$ one wire
$0,75-4 \quad \mathrm{~mm}^{2}$ fine wire without end cap sleeve
$0,5-2,5 \mathrm{~mm}^{2} \quad$ fine wire with end cap sleeve

Comments on hardware：

－The relays in a device never switch at the sametime，but always at staggered intervals．At higher switching frequencies，this time interval always becomes longer．
Example：
If all the channels are parameterised to the same group address（all the relays are to switch at the same）and if several switching telegrams are received，then the switching interval increases to a max of 0.1 sec ．In such a case， the time between two telegrams must not be less than 0.6 sec in order that all the relays react to the status change．
－Various external conductors can be connected．A contact configuration of 230 VAC and a ballast device at the various outputs is not permitted！

Description of application:			Switching RS, LO, TF 206101			
Executable as of mask version:			1.1			
Number of addresses (max):			32	Dynamic table management	Yes 区	No \square
Number of assignments (max):			32	Max. Table length	64	
Communications objects:			16			
Object		Name		Function	Type	Flag
맨	0	Switching		Output 1	1 Bit	C, W
प-1	1	Switching		Output 2	1 Bit	C, W
만	2	Switching		Output 3	1 Bit	C, W
만	3	Switching		Output 4	1 Bit	C, W
ㅁ.-1	4	Switching		Output 5	1 Bit	C, W
-	5	Switching		Output 6	1 Bit	C, W
Assigned to Channels 1-4 of the additional function "Logic operation object":						
\square	8	Logic operation		Output 1*	1 Bit	C, W
만	9	Logic operation		Output 2*	1 Bit	C, W
प-1	10	Logic operation		Output 3*	1 Bit	C, W
\square	11	Logic operation		Output 4*	1 Bit	C, W
Assigned to Channels 1-4 of the additional function "Blocking object":						
$\square{ }_{\square}$	8	Blocking		Output 1*	1 Bit	C, W
- \square_{4}	9	Blocking		Output 2*	1 Bit	C, W
\square_{\square}	10	Blocking		Output 3*	1 Bit	C, W
\square_{4}	11	Blocking		Output 4*	1 Bit	C, W
Assigned to Channels 1-4 of the additional function "Forced guidance object":			al function "Forced guidance object":			
- ${ }_{\text {a }}$	8	Forced guidance		Output 1*	2 Bit	C, W
\square	9	Forced guidance		Output 2*	2 Bit	C, W
- ${ }_{\text {a }}$	10	Forced guidance		Output 3*	2 Bit	C, W
\square	11	Forced guidance		Output 4*	2 Bit	C, W
Revertive signal (feedback) objects:						
\square	12	Revertive signal		Output 1	1 Bit	C, T
\square	13	Revertive signal		Output 2	1 Bit	$\begin{aligned} & \mathrm{C}, \mathrm{~T} \\ & \mathrm{C}, \mathrm{~T} \end{aligned}$
\square	14	Revertive signal		Output 3	1 Bit	
\square	15	Revertive signal		Output 4	1 Bit	$\begin{aligned} & \mathrm{C}, \mathrm{~T} \\ & \mathrm{C}, \mathrm{~T} \end{aligned}$
\square	16	Revertive signal		Output 5	1 Bit	C, T
$\square \mid$	17	Revertive signal		Output 6	1 Bit	

*Objects $8-11$ can be assigned to any output. One should bear in mind that every output can only be assigned to one additional function!
Object description (dynamic object structure)

- Object 0-5 Switching: 1 Bit object to switch a load
- Objects 8-11 Logic operation: 1 Bit object for logical link (e.g. AND / OR)
- Objects 8-11 Blocking: 1 Bit object to block corresponding output
- Objects 8-11 Forced guidance: 2 Bit object to positively set the switching channels (priority)
- Objects 12-17 Revertive signal: 1 Bit object to send out switching status. Adjusting the relays using the slide switch is not recognised!

Functional scope

- Independent switching of 6 channels
- Outputs can be parameterised as normally open or normally closed contacts
- Preferred position can be set in case of bus voltage failure or restoration
- 4 adjustable outputs with 3 objects available: switching, revertive signal and additional function
- 2 further outputs with 2 objects available: switching, revertive signal
- Additional functions can be set: - logic operation function with 3 logical parameters
- blocking function - relay blocking responses can be set
- forced guidance function to assign priorities for incoming switching telegrams
- Invertible revertive signal (feedback) object
- On/Off delay or timer functions can be set individually for each channel

Schematic of functions (e.g. Output 1 excluding additional function)

Schematic of functions (e.g. Output 1 with additional function "positively-driven object")

Parameters		
Description:	Values:	Comments:
\square Output 1-6		
Reaction after bus voltage failure	NO Close contact Open contact	Defines the response of the switch actuator following a bus voltage failure.
Reaction after bus voltage return	Value as before bus voltage failure Close contact Open contact	Defines the response of the switch actuator after the bus voltage is restored.
Time function	NO Switch ON delay Switch OFF delay Switch ON and OFF delay Time switch function (without ON delay) Time switch function (with ON delay)	Sets the required time function
Switch ON delay, factor (0..127)	0 to 127, 10	Defines the time factor that applies for the switch ON delay. Time $=$ Base \times Factor
Switch ON delay, base	130; 260; 520 msec 1.0; 2,1; 4.2; 8.4; 17; 34 sec 1.1; 2.2; 4.5; 9; 18; 36 min 1,2 h	Defines the time basis that applies for the switch ON delay. Time = Base \times Factor Preliminary setting: $10 \times 130 \mathrm{msec}=1.3 \mathrm{sec}$
Switch OFF delay, factor (0..127)	0 to 127, 10	Defines the time factor that applies for the switch OFF delay. Time $=$ Base \times Factor
Switch OFF delay, base	$\begin{aligned} & 130 ; 260 ; 520 \mathrm{msec} \\ & 1.0 ; 2.1 ; 4.2 ; 8.4 ; 17 ; 34 \mathrm{sec} \\ & 1.1 ; 2.2 ; 4.5 ; 9 ; 18 ; 36 \mathrm{~min} \\ & 1.2 \mathrm{~h} \end{aligned}$	Defines the time basis that applies for the switch OFF delay. Time $=$ Base \times Factor Preliminary setting: $10 \times 130 \mathrm{msec}=1.3 \mathrm{sec}$
Switch ON and OFF delay, base	$\begin{aligned} & 130 ; 260 ; 520 \mathrm{msec} \\ & 1.0 ; 2.1 ; 4.2 ; 8.4 ; 17 ; 34 \mathrm{sec} \\ & 1.1 ; 2.2 ; 4.5 ; 9 ; 18 ; 36 \mathrm{~min} \\ & 1.2 \mathrm{~h} \end{aligned}$	Defines the time basis that applies for the switch ON and OFF delay. Time $=$ Base \times Factor Preliminary setting: $10 \times 130 \mathrm{msec}=1.3 \mathrm{sec}$
Reaction on OFF telegram	Switch OFF Ignore the switch OFF telegram	Defines the reaction of the switch actuator when receiving an OFF telegram while timer function is set.
Revertive signal	none do not invert invert	Defines whether and how revertive signal (feedback) concerning the feedback object occurs. Defines relay operation.
Relay operation	Normally open contact Normally closed contact	The relay works with a normally open contact. The relay works with a normally closed contact.

Parameters		
Description-:	Values:	Comments:
$马$ Allocation of the additional functions		
Additional function 1	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	Defines whether additional function 1 is switched on or off.
Allocation	Output 1 Output 2 Output 3 Output 4 Output 5 Output 6	Defines the allocation of additional function 1 to an output port. Note: Only one additional function can be assigned to an output port!
Additional function 2	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	Defines whether additional function 2 is switched on or off.
Allocation	Output 1 Output 2 Output 3 Output 4 Output 5 Output 6	Defines the allocation of additional function 2 to an output port. Note: Only one additional function can be assigned to an output port!
Additional function 3	OFF ON	Defines whether additional function 3 is switched on or off.
Allocation	Output 1 Output 2 Output 3 Output 4 Output 5 Output 6	Defines the assignment of additional function 3 to an output port. Note: Only one additional function can be assigned to an output port!
Additional function 4	OFF ON	Defines whether additional function 4 is switched on or off.
Allocation	Output 1 Output 2 Output 3 Output 4 Output 5 Output 6	Defines the allocation of additional function 4 to an output port. Note: Only one additional function can be assigned to an output port!
3 Additional functions 1 and 2		
Additional function 1 parameterised as a "Logic operation object" (e.g. assigned to Output 1-)		
Link	none OR AND AND with feedback	Defines the logical link. In case of "AND with feedback" the switching object is reset if linking object $=0$.

Parameter					
Description:	Values:		Comments:		
Additional function 1 parameterised as a "Blocking object" (e.g. assigned to Output 1)					
Function at start of blocking	No change Switch OFF Switch ON		Defines the response of the switch actuator at the beginning of a blocking action via the blocking object.		
Function at end of blocking	No change Switch OFF Switch ON		Defines the response of the switch actuator at the end of a blocking action via the blocking object.		
Function of the blocking object	$\begin{aligned} & \text { released }=\mathbf{0} \text {, locked }=\mathbf{1} \\ & \text { released }=1, \text { locked }=0 \end{aligned}$		Defines whether blocking will occur after receiving an ON or OFF telegram.		
Additional function 1 parameterised as "Forced guidance object" (e.g. assigned to Output 1)					
No further parameters!					
Additional function 2, see Additional function 1!					
ζ Additional functions 3 and 4					
See Additional functions 1 and 2					
Comments on software - Forced guidance object					
The switching channel can be forced separately into a switching position irrespective of the switching object by a 2 Bi telegram via the forced guidance object. The "Relay operation" parameter is also effective here. The value of the 2 Bit telegram must be created according to the following syntax:					
The switching status that is being forced is indicated by the first bit (Bit 0) of the forced guidance object. Positivedrive is enabled with the second bit (Bit 1) for the forced guidance object.		Bit 1	Bit 0	Function	
		0	x	Inactive priority \Rightarrow object	'Switching'
		0	x	Inactive priority \Rightarrow object	‘Switching'
		1 1	0 1	Active priority: Active priority:	switch off switch on
During active forced guidance (priority), incoming switching telegrams continue to be evaluated. If forced guidance (priority) is inactive subsequently then the current internal switching status is set in accordance with the switching object value.					

