:hager

TG053A

KNX Weather station GPS

Product description 2
Technical data 3
Layout of the circuit board 5
Installation and commissioning 6
Location 6
Fitting the holder 7
Rear view and drill sketch 8
Preparing the weather station 9
Mounting the weather station 9
Installation notes 10
Maintenance 10
Transmission protocol 11
Abbreviations 11
List of all communications objects 11
Parameter setting 20
Behaviour on power failure and restoration of power 20
General settings 20
GPS Settings 21
Location 22
Rain 25
Night 26
Temperature 27
Temperature threshold value 1 / 2 / 3 / 4 28
Wind 31
Wind threshold value 1 / 2 / 3 32
Brightness 34
Brightness threshold value 1/2 / 3 / 4 35
Twilight 38
Twilight threshold value 1 / 2 / 3 39
Shading 42
Shade settings 43
Facade 1 settings 44
Facade 1 actions 54
Calendar time switch 57
Calendar clock Period 1 / 2 / 3 58
Calendar clock period 1 / 2 / 3, Sequence 1 /2 59
Weekly time switch 60
Weekly clock Mo, Tu, We, Th, Fr, Sa, Su $1 . . .4$ 61
Logic 62
AND Logic 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 64
Use of the AND logic 67
Connection inputs of the AND logic 67
OR Logic 71
Connection inputs of the OR logic 72

Product description

The Suntracer KNX-GPS weather station measures temperature, wind speed and brightness. It recognises precipitation and receives the GPS signal for time and location. In addition, using location coordinates and the time, it calculates the exact position of the sun (azimuth and elevation).
All values can be used for the control of threshold value-dependent switching outputs. States can be linked via AND logic gates and OR logic gates.
The compact housing of the Suntracer KNX-GPS accommodates the sensors, evaluation circuits and bus-coupling electronics.

Functions and operation:

- Brightness and position of the sun: The current light intensity is measured by a sensor. In addition the Suntracer KNX-GPS calculates the position of the sun (azimuth and elevation) using time and location
- Shade control for up to 6 facades with slat and shadow edge tracking
- Wind measurement: The wind strength measurement takes place electronically and thus noiselessly and reliably, even during hail, snow and sub-zero temperatures. Even turbulent air and anabatic winds in the vicinity of the weather station are recorded
- Precipitation recognition: The sensor surface is heated, so that only drops and flakes are recognised as precipitation, but not mist or dew. When the rain or snow stops, the sensor is soon dry again and the precipitation warning ends
- Temperature measurement
- Weekly and calendar time switch: The weather station receives the time and date from the integrated GPS receiver. The weekly time switch switches up to 4 different periods per day. With the calendar time switch up to 3 additional time periods can be defined, in which up to 2 On/Off switches take place. The switching outputs can be used as communications objects. The switch times are set via parameters.
- Switching outputs for all measured and calculated values (threshold values can be set via parameters or communications objects)
- 8 AND and 8 OR logic gates with 4 for each input. All switching events as well as 16 logic inputs (in the form of communications objects) can be used as inputs for the logic gates. The output of each gate can be optionally configured as 1-bit or 2 x 8-bit

Configuration is carried out with the KNX software ETS.

Technical data

Housing:	Plastic
Colour:	White / Translucent
Installation:	Surface-mounted
Protection rating:	IP 44
Dimensions:	approx. $96 \times 77 \times 118(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}, \mathrm{mm}$)
Weight:	approx. 170 g
Ambient temperature:	Operation $-30 \ldots+50^{\circ} \mathrm{C}$, storage $-30 \ldots+70^{\circ} \mathrm{C}$
Auxiliary voltage:	$12 . .40 \mathrm{~V}$ DC, $12 \ldots 28 \mathrm{~V}$ AC.
Auxiliary current:	max. 185 mA at 12 V DC , max. 81 mA at 24 V DC, Residual ripple 10\%
Bus current:	max. 8 mA
Data output:	KNX +/- Bus connector terminal
BCU Type:	own microcontroller
PEI Type:	0
Group addresses:	max. 254
Assignments:	max. 255
Communication objects:	254
Heater rain sensor:	ca. 1.2 W
Temperature measurement range:	$-30 \ldots+80^{\circ} \mathrm{C}$
	Resolution: $0.1{ }^{\circ} \mathrm{C}$
	Accuracy: $\begin{gathered} \pm 0.5^{\circ} \mathrm{C} \text { at }+10 \ldots+50^{\circ} \mathrm{C}, \\ \pm 1^{\circ} \mathrm{C} \text { at }-10 \ldots+85^{\circ} \mathrm{C}, \\ \pm 1.5^{\circ} \mathrm{C} \text { at }-25 \ldots+150^{\circ} \mathrm{C} \end{gathered}$
Wind measurement range:	$0 . .35 \mathrm{~m} / \mathrm{s}$
	Resolution: $0.1 \mathrm{~m} / \mathrm{s}$
	Accuracy: at ambient temperature $-20 \ldots+50^{\circ} \mathrm{C}$: $\pm 22 \%$ of the measurement value when incident flow is from $45 \ldots 315^{\circ}$ $\pm 15 \%$ of the measurement value when incident flow is from 90... 270° (Frontal incident flow corresponds to 180°)

Brightness measurement range:	$0 \ldots 150,000$ lux
	Resolution:
	1 lux at $0 \ldots 120$ lux
	2 lux at $121 \ldots 1,046$ lux
	63 lux at $1,047 \ldots 52,363$ lux
	423 lux at $52,364 \ldots 150,000$ lux
	Accuracy:
	$\pm 20 \%$ at $0 \mathrm{~lx} \ldots 10 \mathrm{klx}$
	$\pm 15 \%$ at $10 \mathrm{klx} \ldots 150 \mathrm{klx}$

For assessing the product with regard to electromagnetic compatibility the following standards were used:
Electromagnetic emission:

- EN 60730-1:2000 EMC Section (23, 26, H23, H26) (Threshold class: B)
- EN 50090-2-2:1996-11 + A1:2002-01 (Threshold class: B)
- EN 61000-6-3:2001 (Threshold class: B)

Immunity to interference:

- EN 60730-1:2000 EMC Section (23, 26, H23, H26)
- EN 50090-2-2:1996-11 + A1:2002-01
- EN 61000-6-1:2004

The product was tested by an accredited EMC laboratory in accordance with the standards named.

Layout of the circuit board

Fig. 1
1 Spring-force auxiliary voltage terminal, suitable for solid conductor up to $1.5 \mathrm{~mm}^{2}$ or fine wire conductor
2 Slot for cable connection to the precipitation sensor in the casing lid
3 GPS antenna
4 Signal LED
5 KNX terminal +/-
6 Program button for setting up the device
7 Program LED

Installation and commissioning

Warning, mains voltage!
 National legal regulations are to be observed.

Installation, testing, commissioning and fault repair should only be carried out by a qualified electrician. De-energise all cables to be fitted and take safety precautions against unintended activation.

The waether station is intended exclusively for appropriate use. If used inappropriately or if the operating instructions are disregarded, any warranty or guarantee expires.
After unpacking, the unit should be checked immediately for any possible mechanical damage. If there is transport damage, the supplier should be notified straight away.

The weather station may not be taken into service if damaged.

If it is assumed that danger-free operation is no longer guaranteed, the equipment should be taken out of service and secured against unintended operation.

The weather station should only be operated in a fixed installation, meaning a built-in condition and after the conclusion of all installation and commissioning work and only in the intended environment.

Hager is not liable for changes in the norms and standards after the operating manual has appeared.

Location

Select an installation position on the building where the sensors can measure wind, rain and sunshine without hindrance. No structural elements should be mounted above the weather station from which water could continue to drop on to the precipitation sensor even after rain or snow has stopped. The weather station should not be shaded by structures or, for example, trees. At least 60 cm of free space must be left beneath the weather station to enable correct wind measurement and prevent snowing in when there is snow.

Magnetic fields, transmitters and interference fields from electrical consumers (e.g. fluorescent lamps, neon signs, switch mode power supplies etc.) can block or interfere with the reception of the GPS signal.

Fig. 2
The weather station must be attached to a vertical wall (or a pole).

Fig. 3
The weather station must be mounted in the horizontal transverse direction.

Fitting the holder

The Suntracer KNX-GPS weather station contains a combined wall/pole holder. On delivery, the holder is fastened to the rear side of the housing with adhesive tape.

Fasten the holder vertically to the wall or pole.

Fig. 4
For wall mounting: Flat side to the wall, crescent moon-shaped crosspiece facing up.

Fig. 5
For pole mounting: curved side to the pole, crosspiece facing down.

Rear view and drill sketch

Fig. 6a
Dimensions of the rear side of the casing with holder. Divergences are possible for technical reasons.

Oblong hole $7.5 \times 5 \mathrm{~mm}$
Fig. 6b Drill sketch

Preparing the weather station

Fig. $7 \quad 1 \quad$ Lid with rain sensor
2 Lid notches
3 Housing lower section
The weather station lid with the rain sensor latches into place on the lower edge to the right and left (see Fig. 7). Remove the lid from the weather station. Proceed carefully to avoid tearing off the cable connection between the circuit board in the lower section and the rain sensor in the lid (cable with plug).

Lead the cable for the voltage supply and bus connection through the rubber seals on the bottom of the weather station and connect Voltage L/N and Bus $+/$ - to the terminals provided.

Mounting the weather station

Close the casing by placing the lid on the lower section. The lid must lock into place on the right and left with a distinct click.

Fig. 8
Check that the lid and lower section have properly latched into place! The picture shows the closed weather station from below.

Fig. 9
Push the casing from above into the fitted holder. In doing this, the studs in the holder must click into the tracks on the casing.

For removal, the weather station can be pulled out of the holder upwards against the resistance of the notch.

Installation notes

Do not open the Suntracer KNX-GPS weather station when water (rain) can enter into it: Even a few drops may damage the electronics.
Ensure that the connection is correct. Incorrect connection may lead to the destruction of the weather station or electronic devices connected to it.

During installation care must be taken that the temperature sensor (small plate on the underside of the casing) is not damaged. The cable connection between the board and the rain sensor should also not be torn off or bent when being connected.
The wind measurement value and thus also all wind switching outputs cannot be issued until 30 seconds after the voltage supply is applied.

Maintenance

The weather station should be regularly checked twice a year for soiling and cleaned if required. If heavily soiled, the wind sensor may be incapable of performing its functions, regularly showing a rain warning or no longer recognising sunshine.

For safety reasons, during cleaning and maintenance the weather station should be separated from the mains current (e.g. disconnect/remove fuse)

Transmission protocol

Units: Temperatures in degrees Celsius
Brightness in lux
Wind in metres per second
Azimuth and elevation in degrees

Abbreviations

Flags:

C	Communication
R	Read
W	Write
T	Transfer
U	Update

List of all communications objects

No.	Name	Function	DPT	Flags
0	Signal LED	Input	1.002	C R W
1	GPS date	Input / Output	11.001	C R W T
	Date	Input / Output	11.001	C R W T
2	GPS time	Input / Output	10.001	C R W T
	Time	Input / Output	10.001	C R W T
3	Date and time request	Input	1.017	CRW
4	GPS malfunction $\text { (} 0=\mathrm{OK} \mid 1 \text { = NOT OK) }$	Output	1.002	CRT
5	Location eastern longitude [${ }^{\circ}$]	Output (DPT 14.007)	14.007	C R T
6	Location northern latitude [${ }^{\circ}$]	$\begin{aligned} & \text { Output (DPT } \\ & \text { 14.007) } \end{aligned}$	14.007	C R T
7	Rain: Switching output 1	Output	1.002	C R T
8	Rain: Switching output 2	Output	1.002	CRT
9	Rain: Switching delay to rain	Input	7.005	C R W
10	Rain: Switching delay to no rain	Input	7.005	C R W
11	Night: Switching output	Output	1.002	C R T
12	Night: Switching delay to night	Input	7.005	C R W
13	Night: Switching delay to non-night	Input	7.005	C R W

No.	Name	Function	DPT	Flags
14	Temperature measurement value	Output	9.001	CRT
15	Temperature measurement value requirement min./max.	Input	1.017	C R W
16	Temperature measurement value minimum	Output	9.001	CRT
17	Temperature measurement value maximum	Output	9.001	CRT
18	Temperature measurement value reset min./max.	Input	1.017	C R W
19	Temperature sensor malfunction ($0=\mathrm{OK} \mid 1$ = NOT OK)	Output	1.002	CRT
20	Temperature TV 1: Absolute value	Input / Output	9.001	CRWTU
21	Temperature TV 1: Change (1:+ \| 0: -)	Input	1.002	C R W
22	Temperature TV 1: Switching delay from 0 to 1	Input	7.005	C R W
23	Temperature TV 1: Switching delay from 1 to 0	Input	7.005	C R W
24	Temperature TV 1: Switching output	Output	1.002	C R T
25	Temperature TV 1: Switching output block	Input	1.002	C R W
26	Temperature TV 2: Absolute value	Input / Output	9.001	CRWTU
27	Temperature TV 2: Change (1:+ \| 0: -)	Input	1.002	CRW
28	Temperature TV 2: Switching delay from 0 to 1	Input	7.005	CRW
29	Temperature TV 2: Switching delay from 1 to 0	Input	7.005	C R W
30	Temperature TV 2: Switching output	Output	1.002	C R T
31	Temperature TV 2: Switching output block	Input	1.002	C R W
32	Temperature TV 3: Absolute value	Input / Output	9.001	CRWTU
33	Temperature TV 3: Change (1:+ \| 0: -)	Input	1.002	C R W
34	Temperature TV 3: Switching delay from 0 to 1	Input	7.005	C R W
35	Temperature TV 3: Switching delay from 1 to 0	Input	7.005	C R W
36	Temperature TV 3: Switching output	Output	1.002	C R T
37	Temperature TV 3: Switching output block	Input	1.002	C R W
38	Temperature TV 4: Absolute value	Input / Output	9.001	CRWTU
39	Temperature TV 4: Change (1:+ \| 0: -)	Input	1.002	C R W
40	Temperature LV 4: Switching delay from 0 to 1	Input	7.005	C R W

No.	Name	Function	DPT	Flags
41	Temperature LV 4: Switching delay from 1 to 0	Input	7.005	C R W
42	Temperature TV 4: Switching output	Output	1.002	C R T
43	Temperature TV 4: Switching output block	Input	1.002	C R W
44	Wind measurement	Output	9.005	C R T
45	Wind measurement value requirement max.	Input	1.017	C R W
46	Maximum wind measurement value	Output	9.005	C R T
47	Wind measurement value reset max.	Input	1.017	C R W
48	Wind Sensor Malfunction ($0=\mathrm{OK} \mid 1$ = NOT OK)	Output	1.002	C R T
49	Wind TV 1: Absolute value	Input / Output	9.005	C R W T U
50	Wind TV 1: Change (1:+ \| 0: -)	Input	1.002	C R W
51	Wind TV 1: Switching delay from 0 to 1	Input	7.005	C R W
52	Wind TV 1: Switching delay from 1 to 0	Input	7.005	C R W
53	Wind TV 1: Switching output	Output	1.002	C R T
54	Wind TV 1: Switching output block	Input	1.002	C R W
55	Wind TV 2: Absolute value	Input / Output	9.005	C R W T U
56	Wind TV 2: Change (1:+\|0:-)	Input	1.002	C R W
57	Wind TV 2: Switching delay from 0 to 1	Input	7.005	C R W
58	Wind TV 2: Switching delay from 1 to 0	Input	7.005	C R W
59	Wind TV 2: Switching output	Output	1.002	C R T
60	Wind TV 2: Switching output block	Input	1.002	C R W
61	Wind TV 3: Absolute value	Input / Output	9.005	C R W T U
62	Wind TV 3: Change (1:+\|0: -)	Input	1.002	C R W
63	Wind TV 3: Switching delay from 0 to 1	Input	7.005	C R W
64	Wind TV 3: Switching delay from 1 to 0	Input	7.005	C R W
65	Wind TV 3: Switching output	Output	1.002	C R T
66	Wind TV 3: Switching output block	Input	1.002	C R W
67	Brightness measurement value	Output	9.004	C R T
68	Brightness TV 1: Absolute value	Input / Output	9.004	C R W T U
69	Brightness TV 1: Change (1:+\|0:-)	Input	1.002	C R W
70	Brightness TV 1: Switching delay from 0 to 1	Input	7.005	C R W

No.	Name	Function	DPT	Flags
71	Brightness TV 1: Switching delay from 1 to 0	Input	7.005	C R W
72	Brightness TV 1: Switching output	Output	1.002	CRT
73	Brightness TV 1: Switching output block	Input	1.002	C R W
74	Brightness TV 2: Absolute value	Input / Output	9.004	CRWTU
75	Brightness TV 2: Change (1:+ \| 0:-)	Input	1.002	CRW
76	Brightness TV 2: Switching delay from 0 to 1	Input	7.005	CRW
77	Brightness TV 2: Switching delay from 1 to 0	Input	7.005	C R W
78	Brightness TV 2: Switching output	Output	1.002	C R T
79	Brightness TV 2: Switching output block	Input	1.002	C R W
80	Brightness TV 3: Absolute value	Input / Output	9.004	CRWTU
81	Brightness TV 3: Change (1:+ \| 0: -)	Input	1.002	C R W
82	Brightness TV 3: Switching delay from 0 to 1	Input	7.005	C R W
83	Brightness TV 3: Switching delay from 1 to 0	Input	7.005	C R W
84	Brightness TV 3: Switching output	Output	1.002	C R T
85	Brightness TV 3: Switching output block	Input	1.002	C R W
86	Brightness TV 4: Absolute value	Input / Output	9.004	CRWTU
87	Brightness TV 4: Change (1:+ \| 0: -)	Input	1.002	C R W
88	Brightness TV 4: Switching delay from 0 to 1	Input	7.005	CRW
89	Brightness TV 4: Switching delay from 1 to 0	Input	7.005	C R W
90	Brightness TV 4: Switching output	Output	1.002	CRT
91	Brightness TV 4: Switching output block	Input	1.002	CRW
92	Twilight TV 1: Absolute value	Input / Output	9.004	C R W T U
93	Twilight TV 1: Change (1:+ \| 0: -)	Input	1.002	CRW
94	Twilight TV 1: Switching delay from 0 to 1	Input	7.005	CRW
95	Twilight TV 1: Switching delay from 1 to 0	Input	7.005	C R W
96	Twilight TV 1: Switching output	Output	1.002	CRT
97	Twilight TV 1: Switching output block	Input	1.002	C R W

No.	Name	Function	DPT	Flags
98	Twilight TV 2: Absolute value	Input / Output	9.004	C R W T U
99	Twilight TV 2: Change (1:+ \| 0: -)	Input	1.002	C R W
100	Twilight TV 2: Switching delay from 0 to 1	Input	7.005	C R W
101	Twilight TV 2: Switching delay from 1 to 0	Input	7.005	C R W
102	Twilight TV 2: Switching output	Output	1.002	CRT
103	Twilight TV 2: Switching output block	Input	1.002	C R W
104	Twilight TV 3: Absolute value	Input / Output	9.004	C R W T U
105	Twilight TV 3: Change (1:+ \| 0: -)	Input	1.002	C R W
106	Twilight TV 3: Switching delay from 0 to 1	Input	7.005	C R W
107	Twilight TV 3: Switching delay from 1 to 0	Input	7.005	C R W
108	Twilight TV 3: Switching output	Output	1.002	CRT
109	Twilight TV 3: Switching output block	Input	1.002	C R W
110	Sun position Azimuth [${ }^{\circ}$]	Output (DPT 14.007)	14.007	C R T
111	Sun position Elevation [${ }^{\circ}$]	Output DPT 14.007)	14.007	C R T
112	Sun position Azimuth [${ }^{\circ}$]	Output (DPT 9.*)	9.*	C R T
113	Sun position Elevation [${ }^{\circ}$]	Output (DPT 9.*)	9.*	CRT
114	Facade heat protection status	Output	1.002	CRT
115	Facade 1: Status	Output	1.002	CRT
116	Facade 1: Movement position [\%]	Output	5.001	CRT
117	Facade 1: Slat position [\%]	Output	5.001	CRT
118	Facade 1: Block (1 = blocked)	Input	1.002	C R W
119	Facade 2: Status	Output	1.002	CRT
120	Facade 2: Movement position [\%]	Output	5.001	CRT
121	Facade 2: Slat position [\%]	Output	5.001	CRT
122	Facade 2: Block (1 = blocked)	Input	1.002	C R W
123	Facade 3: Status	Output	1.002	C R T
124	Facade 3: Movement position [\%]	Output	5.001	CRT
125	Facade 3: Slat position [\%]	Output	5.001	CRT
126	Facade 3: Block (1 = blocked)	Input	1.002	C R W
127	Facade 4: Status	Output	1.002	CRT
128	Facade 4: Movement position [\%]	Output	5.001	CRT
129	Facade 4: Slat position [\%]	Output	5.001	CRT
130	Facade 4: Block (1 = blocked)	Input	1.002	C R W

No.	Name	Function	DPT	Flags
131	Facade 5: Status	Output	1.002	C R T
132	Facade 5: Movement position [\%]	Output	5.001	C R T
133	Facade 5: Slat position [\%]	Output	5.001	C R T
134	Facade 5: Block (1 = blocked)	Input	1.002	C R W
135	Facade 6: Status	Output	1.002	C R T
136	Facade 6: Movement position [\%]	Output	5.001	C R T
137	Facade 6: Slat position [\%]	Output	5.001	CRT
138	Facade 6: Block (1 = blocked)	Input	1.002	C R W
139	Calendar time switch Period 1, Seq. 1: Switching output	Output	1.002	C R T
140	Calendar time switch Period 1, Seq. 2: Switching output	Output	1.002	C R T
141	Calendar time switch Period 2, Seq. 1: Switching output	Output	1.002	C R T
142	Calendar time switch Period 2, Seq. 2: switching output	Output	1.002	C R T
143	Calendar time switch Period 3, Seq. 1: Switching output	Output	1.002	C R T
144	Calendar time switch Period 3, Seq. 2: Switching output	Output	1.002	C R T
145	Weekly time switch Monday 1: Switching output	Output	1.002	C R T
146	Weekly time switch Monday 2: Switching output	Output	1.002	C R T
147	Weekly time switch Monday 3: Switching output	Output	1.002	C R T
148	Weekly time switch Monday 4: Switching output	Output	1.002	C R T
149	Weekly time switch Tuesday 1 : Switching output	Output	1.002	C R T
150	Weekly time switch Tuesday 2 : Switching output	Output	1.002	C R T
151	Weekly time switch Tuesday 3: Switching output	Output	1.002	C R T
152	Weekly time switch Tuesday 4: Switching output	Output	1.002	C R T
153	Weekly time switch Wednesday 1: Switching output	Output	1.002	C R T
154	Weekly time switch Wednesday 2: Switching output	Output	1.002	C R T

No.	Name	Function	DPT	Flags
155	Weekly time switch Wednesday 3: Switching output	Output	1.002	C R T
156	Weekly time switch Wednesday 4: Switching output	Output	1.002	C R T
157	Weekly time switch Thursday 1: Switching output	Output	1.002	C R T
158	Weekly time switch Thursday 2: Switching output	Output	1.002	C R T
159	Weekly time switch Thursday 3: Switching output	Output	1.002	C R T
160	Weekly time switch Thursday 4: Switching output	Output	1.002	C R T
161	Weekly time switch Friday 1: Switching output	Output	1.002	C R T
162	Weekly time switch Friday 2: Switching output	Output	1.002	C R T
163	Weekly time switch Friday 3: Switching output	Output	1.002	C R T
164	Weekly time switch Friday 4: Switching output	Output	1.002	C R T
165	Weekly time switch Saturday 1: Switching output	Output	1.002	C R T
166	Weekly time switch Saturday 2: Switching output	Output	1.002	C R T
167	Weekly time switch Saturday 3: Switching output	Output	1.002	C R T
168	Weekly time switch Saturday 4: Switching output	Output	1.002	C R T
169	Weekly time switch Sunday 1: Switching output	Output	1.002	C R T
170	Weekly time switch Sunday 2: Switching output	Output	1.002	C R T
171	Weekly time switch Sunday 3: Switching output	Output	1.002	C R T
172	Weekly time switch Sunday 4: Switching output	Output	1.002	C R T
173	AND Logic 1: 1-bit switching output	Output	1.002	C R T
174	AND Logic 1: 8-bit output A	Output	5.010	CRT
175	AND Logic 1: 8-bit output B	Output	5.010	C R T
176	AND Logic 1: Block	Input	1.002	C R W
177	AND Logic 2: 1-bit switching output	Output	1.002	C R T
178	AND Logic 2: 8-bit output A	Output	5.010	C R T

No.	Name	Function	DPT	Flags
179	AND Logic 2: 8-bit output B	Output	5.010	CRT
180	AND Logic 2: Block	Input	1.002	CRW
181	AND Logic 3: 1-bit switching output	Output	1.002	CRT
182	AND Logic 3: 8-bit output A	Output	5.010	CRT
183	AND Logic 3: 8-bit output B	Output	5.010	CRT
184	AND Logic 3: Block	Input	1.002	C R W
185	AND Logic 4: 1-bit switching output	Output	1.002	CRT
186	AND Logic 4: 8-bit output A	Output	5.010	CRT
187	AND Logic 4: 8-bit output B	Output	5.010	CRT
188	AND Logic 4: Block	Input	1.002	CRW
189	AND Logic 5: 1-bit switching output	Output	1.002	CRT
190	AND Logic 5: 8-bit output A	Output	5.010	CRT
191	AND Logic 5: 8-bit output B	Output	5.010	CRT
192	AND Logic 5: Block	Input	1.002	C R W
193	AND Logic 6: 1-bit switching output	Output	1.002	CRT
194	AND Logic 6: 8-bit output A	Output	5.010	CRT
195	AND Logic 6: 8-bit output B	Output	5.010	CRT
196	AND Logic 6: Block	Input	1.002	C R W
197	AND Logic 7: 1-bit switching output	Output	1.002	CRT
198	AND Logic 7: 8-bit output A	Output	5.010	CRT
199	AND Logic 7: 8-bit output B	Output	5.010	CRT
200	AND Logic 7: Block	Input	1.002	C R W
201	AND Logic 8: 1-bit switching output	Output	1.002	CRT
202	AND Logic 8: 8-bit output A	Output	5.010	CRT
203	AND Logic 8: 8-bit output B	Output	5.010	CRT
204	AND Logic 8: Block	Input	1.002	C R W
205	OR Logic 1: 1-bit switching output	Output	1.002	CRT
206	OR Logic 1: 8-bit output A	Output	5.010	CRT
207	OR Logic 1: 8-bit output B	Output	5.010	CRT
208	OR Logic 1: Block	Input	1.002	C R W
209	OR Logic 2: 1-bit switching output	Output	1.002	CRT
210	OR Logic 2: 8-bit output A	Output	5.010	CRT
211	OR Logic 2: 8-bit output B	Output	5.010	CRT
212	OR Logic 2: Block	Input	1.002	C R W
213	OR Logic 3: 1-bit switching output	Output	1.002	CRT
214	OR Logic 3: 8-bit output A	Output	5.010	CRT
215	OR Logic 3: 8-bit output B	Output	5.010	CRT
216	OR Logic 3: Block	Input	1.002	CRW
217	OR Logic 4: 1-bit switching output	Output	1.002	CRT
218	OR Logic 4: 8-bit output A	Output	5.010	CRT
219	OR Logic 4: 8-bit output B	Output	5.010	C R T
220	OR Logic 4: Block	Input	1.002	C R W

No.	Name	Function	DPT	Flags
221	OR Logic 5: 1-bit switching output	Output	1.002	C R T
222	OR Logic 5: 8-bit output A	Output	5.010	C R T
223	OR Logic 5: 8-bit output B	Output	5.010	C R T
224	OR Logic 5: Block	Input	1.002	C R W
225	OR Logic 6: 1-bit switching output	Output	1.002	C R T
226	OR Logic 6: 8-bit output A	Output	5.010	C R T
227	OR Logic 6: 8-bit output B	Output	5.010	C R T
228	OR Logic 6: Block	Input	1.002	C R W
229	OR Logic 7: 1-bit switching output	Output	1.002	C R T
230	OR Logic 7: 8-bit output A	Output	5.010	C R T
231	OR Logic 7: 8-bit output B	Output	5.010	C R T
232	OR Logic 7: Block	Input	1.002	C R W
233	OR Logic 8: 1-bit switching output	Output	1.002	C R T
234	OR Logic 8: 8-bit output A	Output	5.010	C R T
235	OR Logic 8: 8-bit output B	Output	5.010	C R T
236	OR Logic 8: Block	Input	1.002	C R W
237	Logic input 1	Input	1.002	C R W
238	Logic input 2	Input	1.002	C R W
239	Logic input 3	Input	1.002	C R W
240	Logic input 4	Input	1.002	C R W
241	Logic input 5	Input	1.002	C R W
242	Logic input 6	Input	1.002	C R W
243	Logic input 7	Input	1.002	C R W
244	Logic input 8	Input	1.002	C R W
245	Logic input 9	Input	1.002	C R W
246	Logic input 10	Input	1.002	C R W
247	Logic input 11	Input	1.002	C R W
248	Logic input 12	Input	1.002	C R W
249	Logic input 13	Input	1.002	C R W
250	Logic input 14	Input	1.002	C R W
251	Logic input 15	Input	1.002	C R W
252	Logic input 16	1.002	C R W	
253	Software version	readable	217.001	C R T

Parameter setting

Behaviour on power failure and restoration of power

Behaviour on bus or auxiliary voltage failure:

The device transmits nothing.

Behaviour on bus or auxiliary voltage failure and following programming or reset:

The device sends all measurement values as well as switching and status according to their transmission behaviour set in the parameters with the delays established in the "General settings" parameter block. The "Software version" communications object is sent once after 5 seconds.

General settings

Transmission delay after power-up and programming for:	
Measurement values	5 secs $\ldots 2$ hrs
Threshold values and switching outputs	5 secs $\ldots 2$ hrs
Shade automation outputs	5 secs $\ldots 2$ hrs
Logic outputs	5 secs $\ldots 2$ hrs

None

On if signal object $=1 \mid$ Off if signal object $=0$
Blinks if signal object $=0$
Blinks if signal object $=1$
Blinks if GPS reception OK
(\rightarrow see GPS Settings)
Blinks if GPS reception not OK
$(\rightarrow$ see GPS Settings)

GPS Settings

Date and time will be set by	- GPS signal and not transmitted - GPS signal and transmitted periodically - GPS signal and transmitted on request - GPS signal and transmitted on request + periodically - Communications objects and not transmitted
Transmit cycle (only if date and time are transmitted "periodically")	5 secs ... 2 hrs
If there's no reception, GPS malfunction is recognised ... after the last reception/reset	$20 \mathrm{~min} 30 \mathrm{~min} 1 \mathrm{hr} \quad 1.5 \mathrm{hrs} 2 \mathrm{hrs}$
After auxiliary voltage is restored it can take up to ten minutes till GPS OK.	

GPS malfunction transmits $(1=$ Malfunction $\mid 0=$ no Malfunction $)$	• not \bullet on change \bullet on change to 1 \bullet on change to 0 \bullet on change and periodically \bullet on change to 1 and periodically \bullet on change to 0 and periodically
Transmit cycle (is transmitted if "periodically" is selected)	5 secs $\ldots 2$ hrs

If date and time are set by GPS signal:

The current date and time can be set initially via the ETS. The weather station uses this data until the first time a valid GPS signal is received.

If date and time are set by communications object:

Between the transmission of the date and the transmission of the time, no date change may take place; they must be sent to the weather station on the same day.
On initial start-up the date and time must be sent directly after one another, so that the internal device clock can start.

Location

The location data is required in order to be able to calculate the position of the sun with the help of the date and time. The exact location is received by GPS. During the initial start-up, the input coordinates are used for as long as no GPS reception exists.

In order to be able to display the correct time, the location must also be entered. Only in this way can the weather station automatically take into account the UTC offset (difference from world time) and the summer/winter time change-over.

The coordinates of various towns are saved in the weather station:

1.1.1 Suntracer KNX-GPS

General settings
GPS Settings
Location
Rain
Night
Temperature
Wind
Brightness
Twilight
Shading
Calendar time switch
Weekly time switch
Logic

Country	- Other countries - Belgium - Germany - France - Greece Italy Luxembourg - Netherlands	- Norway - Austria Portugal Sweden - Switzerland - Spain Turkey UK
Location	6 towns in Belgi 41 towns in Germ 30 towns in Fran 9 towns in Greece 20 towns in Italy 1 town in Luxem 8 towns in the N 11 towns in Nor 13 towns in Aus 5 towns in Portu 15 towns in Swe 12 towns in Swit 23 towns in Spai 13 towns in Turk 21 towns in the	
Time zone definition	standard specific	
Summer/winter time change-over on the	[Change only possible with "Specific time zone definition"]	
Rule for summer/winter time change-over		

Location coordinates	\bullet do not transmit \bullet transmit periodically \bullet transmit on change \bullet transmit on change and periodically
On change of (only if "on change" is selected)	$0,5^{\circ} \quad 1^{\circ} \quad 2^{\circ} \quad 5^{\circ} \quad 10^{\circ}$
Transmit cycle (only if "periodically" is selected)	5 secs $\ldots 2$ hrs

The summer/winter time change-over takes place automatically when "Time zone definition standard" is selected. If "Time zone definition specific" is selected, the rule for the change-over can be adjusted manually.

As soon as "another country" or "another location" is selected, the input fields for the exact coordinates appear. For example, enter ($40^{\circ} 43^{\prime}$ northern latitude, $74^{\circ} 0^{\prime}$ western longitude) for New York, USA:

East. longitude [degrees, $-180 \ldots+180$]	[negative values mean "west. longitude"]
East. longitude [minutes, $-59 \ldots+59$]	[negative values mean "west. longitude"]
Northern latitude [Degrees, $-90 \ldots+90$]	[negative values mean "southern latitude"]
Northern latitude $[$ minutes, $-59 \ldots+59]$	[negative values mean "southern latitude"]
Rule for summer/winter time change-over	[can be specified manually here]

Rain

Night

1.1.1 Suntracer KNX-GPS

Use night recognition Night is recognised below 10 Lux.	No Yes
At night the switching output is	$1 \quad 0$
Delays can be set via objects (in seconds)	No Yes
Switching delay to night	None 1 sec ... 2 hrs
Switching delay to non-night	None 1 sec $\ldots 2$ hrs change • on change to 1 \bullet on change to 0 • on change and periodically \bullet on change to 1 and periodically \bullet on change to 0 and periodically
Switching output transmits	5 secs .. 2 hrs
Transmit cycle (only if "periodically" is selected)	

Temperature

Temperature threshold value 1 / 2 / 3 / 4

Threshold value:

Threshold value setting via parameter:

Threshold value setting via	Parameter \quad Communications objects
Threshold value in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800$
Hysteresis of the threshold value in \%	$0 \ldots 50$

Threshold value setting via communications object:

Threshold value setting via	Parameter Communications objects
The last communicated value should be retained	no after restoration of power after restoration of power and programming
Start threshold value in $0.1^{\circ} \mathrm{C}$ valid till 1st communication	$-300 \ldots 800$

Type of threshold value change	Absolute value Increase / Decrease
Step size (only for threshold value change through "Increase / Decrease")	$\begin{array}{llllll} 0.1^{\circ} \mathrm{C} & 0.2^{\circ} \mathrm{C} & 0.3^{\circ} \mathrm{C} & 0.4^{\circ} \mathrm{C} & 0.5^{\circ} \mathrm{C} & 1^{\circ} \mathrm{C} \\ 2^{\circ} \mathrm{C} & 3^{\circ} \mathrm{C} & 4^{\circ} \mathrm{C} & 5^{\circ} \mathrm{C} & & \\ \hline \end{array}$
Hysteresis of the threshold value in \%	$0 \ldots 50$

If the threshold value is set by a communication object, during the initial commissioning a threshold value must be specified which is valid until the 1st communication of a new threshold value. With weather stations that have already been taken into service the last threshold value communicated is used.

If a threshold is set once via parameter or communication object, the last set threshold value remains until a new threshold value is transmitted by a communication object.
The last threshold values set by communications objects are saved in the EEPROM, so that they are retained during a power outage and are available once again when power is restored.

Switching output:

Output is (TV = threshold value)	TV above $=1 \mid$ TV - Hyst. below $=0$ TV above $=0 \mid$ TV - Hyst. below $=1$ - TV below $=1 \mid$ TV + Hyst. above $=0$ - TV below $=0 \mid$ TV + Hyst. above $=1$
Switching delay from 0 to 1	None $1 \mathrm{sec} \ldots 2 \mathrm{hrs}$
Switching delay from 1 to 0	None $1 \mathrm{sec} \ldots 2 \mathrm{hrs}$
Delays can be set via objects (in seconds)	No Yes
Switching output transmits	- on change - on change to 1 - on change to 0 - on change and periodically - on change to 1 and periodically - on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs ... 2 hrs

Block:

Use switching output block	No Yes
Evaluation of blocking object	On Value 1: block \| On Value 0: release On Value 0: block \| On Value 1: release
Blocking object value before 1st communication	$0 \quad 1$
Behaviour of the switching output	• do not transmit message • transmit 0 • transmit 1
On block	[Dependent on the setting "Switching output sends"]
On release (with 2 seconds release delay)	

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output transmits ..." (see "Switching output")

Switching output transmits on change	transmits no message • transmits status of the switching output
Switching output transmits on change to 1	transmits no message \bullet if switching output $=1 \rightarrow$ transmit 1
Switching output transmits on change to 0	transmits no message • if switching output $=0 \rightarrow$ transmit 0
Switching output transmits upon change and periodically	transmit switching output status
Switching output transmits upon change to 1 and periodically	if switching output $=1 \rightarrow$ transmit 1
Switching output transmits upon change to 0 and periodically	if switching output $=0 \rightarrow$ transmit 0

Wind

1.1.1 Suntracer KNX-GPS

General settings

GPS Settings
Location
Rain
Night
Temperature
Temperature threshold value 1

Wind

Brightness
Twilight
Shading
Calendar time switch
Weekly time switch
Logic

Measurement value	- do not transmit - transmit periodically - transmit on change - transmit on change and periodically
On change of (only if "on change" is selected)	2\% 5\% 10\% 25\% 50\%
Transmit cycle (only if "periodically" is selected)	5 secs ... 2 hrs
Use min. and max. values (Values are not retained after reset)	No Yes
Use object "wind sensor malfunction"	No Yes
Use threshold value 1 / 2 / 3 / 4	No Yes

Wind threshold value 1 / 2 / 3

Threshold value:

Threshold value setting via parameter:

Threshold value setting via	Parameter \quad Communications objects
Threshold value in $0.1 \mathrm{~m} / \mathrm{s}$	$1 \ldots 350$
Hysteresis of the threshold value in \%	$0 \ldots 50$

Threshold value setting via communications object:

Threshold value setting via	Parameter Communications objects
The last communicated value should be retained	• no after restoration of power after restoration of power and programming
Start threshold value in m / s valid till 1 st communication	$1 \ldots 350$

Type of threshold value change	Absolute value Increase / Decrease					
Step size (only for threshold value change	$0.1 \mathrm{~m} / \mathrm{s}$	$0.2 \mathrm{~m} / \mathrm{s}$	0.3	/s	m / s	$0.5 \mathrm{~m} / \mathrm{s}$
through "Increase / Decrease")	$1 \mathrm{~m} / \mathrm{s}$	$2 \mathrm{~m} / \mathrm{s}$	$3 \mathrm{~m} / \mathrm{s}$	$4 \mathrm{~m} / \mathrm{s}$	$5 \mathrm{~m} / \mathrm{s}$	
Hysteresis of the threshold value in \%	$0 \ldots 50$					

If the threshold value is set by a communication object, during the initial commissioning a threshold value must be specified which is valid until the 1st communication of a new threshold value. With weather stations that have already been taken into service the last threshold value communicated is used.

Once a threshold value is set via parameter or communication object, the last set threshold value remains until a new threshold value is transmitted by a communication object.
The last threshold values set by communications objects are saved in the EEPROM, so that they are retained during a power outage and are available once again when power is restored.

Switching output:

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Output is } \\ \text { (TV = threshold value) }\end{array} & \begin{array}{l}\text { TV above }=1 \mid \text { TV }- \text { Hyst. below }=0 \\ \text { TV above }=0 \mid \text { TV }- \text { Hyst. below }=1\end{array} \\ \text { •TV below }=1 \mid \text { TV }+ \text { Hyst. above }=0 \\ \bullet \text { TV below }=0 \mid \text { TV }+ \text { Hyst. above }=1\end{array}\right]$

Block:

Use switching output block	No Yes	
Evaluation of the blocking object	On Value 1: block \| On Value 0: release On Value 0: block	On Value 1: release
Blocking object value before 1st communication	01	
Behaviour of the switching output		
On block	- do not transmit message - transmit 0 - transmit 1	
On release (with 2 seconds release delay)	[Dependent on the "Switching output transmits" setting]	

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output transmits ..." (see "Switching output")

Switching output transmits on change	transmit no message \bullet transmit status of the switching output
Switching output transmits on change to 1	transmit no message \bullet if switching output $=1 \rightarrow$ transmit 1
Switching output transmits on change to 0	transmit no message \bullet if switching output $=0 \rightarrow$ transmit 0
Switching output sends upon change and periodically	send switching output status
Switching output sends upon change to 1 and periodically	if switching output $=1 \rightarrow$ send 1
Switching output sends upon change to 0 and periodically	if switching output $=0 \rightarrow$ send 0

Brightness

If the shade automation is to be used, a threshold value must be active!

Measurement value	• do not transmit - transmit periodically - transmit on change • transmit on change and periodically					
On change of (only if "on change" is selected)	2%		5%	10%	25%	50%
:---	:---	:---	:---			

Send cycle (only if "periodically" is selected)	5 secs $\ldots 2$ hrs
Use threshold value $1 / 2 / 3 / 4$	No Yes

Brightness threshold value 1 / 2 / 3 / 4

1.1.1 Suntracer KNX-GPS

General settings
GPS Settings
Location
Rain
Night
Temperature
Temperature threshold value 1
Wind
Wind threshold value 1
Brightness
Brightness threshold value 1
Twilight
Shading
Calendar time switch
Weekly time switch
Logic

Brightness threshold value 1

Threshold value:

Threshold value setting via
Threshold value in kLux

Hysteresis of threshold value in \%

Switching output:

Output is
($\mathrm{TV}=$ = threshold value)
Delays can be set via objects
(in seconds)
Switching delay from 0 to 1

Switching delay from 1 to 0

Switching output transmits

Transmit cycle

Block:

Use switching output block
Evaluation of blocking object
Blocking object value before 1 st communication

Behaviour of switching output
On block
On release:
[with 2 seconds release delay]

Parameter
60
20

TV above $=1 \mathrm{I} \mathrm{TV} \cdot$ Hyst. below $=0$
No None None on change and periodically 5 secs

do not transmit message
Transmit switching output status
OK Cancel Default Info \quad Help

Threshold value:

Threshold value setting via parameter:

Threshold value setting via	Parameter Communications objects
Threshold value in kLux	$0 \ldots 150$
Hysteresis of the threshold value in \%	$0 \ldots 50$

Threshold value setting via communications object:

Threshold value setting via	Parameter Communications objects
The last communicated value should be retained	• no after restoration of power after restoration of power and programming
Start threshold in kLux valid till 1st communication	$0 \ldots 150$
Type of threshold value change	Absolute value Increase / Decrease
Step size (only for threshold value change through "Increase / Decrease")	1 klux 2 klux 3 klux 4 klux 5 klux 10 klux
Hysteresis of the threshold value in \%	$0 \ldots 50$

If the threshold value is set by a communication object, during the initial commissioning a threshold value must be specified which is valid until the 1st communication of a new threshold value. With weather stations that have already been taken into service the last threshold value communicated is used.

Once a threshold value is set via parameter or communication object, the last set threshold value remains until a new threshold value is transmitted by a communication object.
The last threshold values set by communications objects are saved in the EEPROM, so that they are retained during a power outage and are available once again when power is restored.

Switching output:

Output is (TV = threshold value)	TV above $=1 \mid$ TV - Hyst. below $=0$ TV above $=0 \mid$ TV - Hyst. below $=1$ - TV below $=1 \mid \mathrm{TV}+$ Hyst. above $=0$ - TV below $=0 \mid$ TV + Hyst. above $=1$
Switching delay from 0 to 1	None $1 \mathrm{sec} \ldots 2 \mathrm{hrs}$
Switching delay from 1 to 0	None $1 \mathrm{sec} \ldots 2 \mathrm{hrs}$
Delays can be set via objects (in seconds)	No Yes
Switching output transmits	- on change - on change to 1 - on change to 0 - on change and periodically - on change to 1 and periodically - on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs .. 2 hrs

Block:

Use switching output block	No Yes
Evaluation of the blocking object	On Value 1: block \| On Value 0: release On Value 0: block \| On Value 1: release
Blocking object value before 1st communication	$0 \quad 1$
Behaviour of the switching output	• do not transmit message • transmit 0 • transmit 1
On block	[Dependent on the "Switching output transmits" setting]
On release (with 2 seconds release delay)	

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output transmits ..." (see "Switching output")

Switching output transmits on change	transmit no message \bullet transmit status of the switching output
Switching output transmits on change to 1	transmit no message \bullet if switching output $=1 \rightarrow$ transmit 1
Switching output transmits on change to 0	transmit no message \bullet if switching output $=0 \rightarrow$ transmit 0
Switching output transmits upon change and periodically	transmit switching output status
Switching output transmits upon change to 1 and periodically	if switching output $=1 \rightarrow$ transmit 1
Switching output transmits upon change to 0 and periodically	if switching output $=0 \rightarrow$ transmit 0

Twilight

1.1.1 Suntracer KNX-GPS

General settings GPS Settings
Location
Rain
Night
Temperature
Temperature threshold value 1
Wind
Wind threshold value 1
Brightness
Brightness threshold value 1
Twilight
Shading
Calendar time switch
Weekly time switch
Logic

Use threshold value 1	No	
Use threshold value 2	No	
Use threshold value 3	No	\checkmark

OK Cancel Default Info \quad Help
Use threshold value 1 / 2 / 3 / $4 \quad$ No Yes

Twilight threshold value 1 / 2 / 3

Threshold value:

Threshold value setting via parameter:

Threshold value setting via	Parameter \quad Communications objects
Threshold value in Lux	$1 \ldots 1000$
Hysteresis of threshold value in $\%$	$0 \ldots 50$

Threshold value setting via communications object:

Threshold value setting via	Parameter Communications objects
The last communicated value should be retained	• no after restoration of power after restoration of power and programming
Start threshold value in Lux valid till 1st communication	$1 \ldots 1000$

If the threshold value is set by a communication object, during the initial commissioning a threshold value must be specified which is valid until the 1st communication of a new threshold value. With weather stations that have already been taken into service, the last threshold value communicated is used.

Once a threshold value is set via parameter or communication object, the last set threshold value remains until a new threshold value is transmitted by a communication object.
The last threshold values set by communications objects are saved in the EEPROM, so that they are retained during a power outage and are available once again when power is restored.

Switching output:

Output is (TV = threshold value)	TV above $=1 \mid$ TV - Hyst. below $=0$ TV above $=0 \mid$ TV - Hyst. below $=1$ - TV below $=1 \mid \mathrm{TV}+$ Hyst. above $=0$ - TV below $=0 \mid$ TV + Hyst. above $=1$
Switching delay from 0 to 1	None $1 \mathrm{sec} \ldots 2 \mathrm{hrs}$
Switching delay from 1 to 0	None $1 \mathrm{sec} \ldots 2 \mathrm{hrs}$
Delays can be set via objects (in seconds)	No Yes
Switching output transmits	- on change - on change to 1 - on change to 0 - on change and periodically - on change to 1 and periodically - on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs .. 2 hrs

Block:

Use switching output block	No Yes	
Evaluation of the blocking object	On Value 1: block \| On Value 0: release On Value 0: block	On Value 1: release
Blocking object value before 1st communication	01	
Behaviour of the switching output		
On block	- do not transmit message - transmit 0 - transmit 1	
On release (with 2 seconds release delay)	[Dependent on the "Switching output transmits" setting]	

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output transmits .." (see "Switching output")

Switching output transmits on change	transmit no message \bullet transmit status of the switching output
Switching output transmits on change to 1	transmit no message \bullet if switching output $=1 \rightarrow$ transmit 1
Switching output transmits on change to 0	transmit no message \bullet if switching output $=0 \rightarrow$ transmit 0
Switching output transmits upon change and periodically	transmit switching output status
Switching output transmits upon change to 1 and periodically	if switching output $=1 \rightarrow$ transmit 1
Switching output transmits upon change to 0 and periodically	if switching output $=0 \rightarrow$ transmit 0

Shading

Classifying the facades for the control unit

The control options for shades (shadow edge tracking and slat tracking) are facade-related functions.

Top view:

Curved/round fronts should be divided into several facades (segments) to be controlled individually.

If a building has more than 6 facades, the deployment of another weather station is recommended; particularly as this also makes it possible to measure the wind speed in another location.
When there are several buildings, wind measurement should take place separately for each building (e.g. with additional KNX W wind sensors), as, depending on the positions of the buildings in relation to one another, different wind speeds may occur.

Shade settings

Sun position	\bullet do not transmit \bullet transmit periodically \bullet transmit on change \bullet transmit on change and periodically
On change of (only if "on change" is selected)	$1^{\circ} \mathrm{C} \ldots 15^{\circ} \mathrm{C}$
Transmit cycle (only if "periodically" is selected)	5 secs. .2 hrs
Use facade $1 / 2 / 3 / 4 / 5 / 6$	No Yes
Use heat protection temperature	No Yes

If the heat protection temperature is used:

Use heat protection temperature	Yes
Heat protection temperature in ${ }^{\circ} \mathrm{C}$	$15 \ldots 50$
Heat protection is $(H P T V ~=~ H e a t ~ p r o t e c t i o n ~ t h r e s h o l d ~ v a l u e) ~$	HPTV above = active \| HPTV - Hyst. below $=$ inactive

Object "Facades heat protection status" transmits	• on change \bullet on change to 1 \bullet on change to 0 \bullet on change and periodically • on change to 1 and periodically • on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs .. 2 hrs

Facade 1 settings

For each facade, the shade conditions (brightness, position of the sun) and the facade settings (architectural characteristics such as orientation or slat type) can be specified.

Shade conditions:

Brightness condition fulfilled, if	Brightness threshold value $1 / 2 / 3 / 4$
Brightness above	
Brightness condition not fulfilled, if Brightness lower Threshold - hysteresis	$0 \ldots 50$
Hysteresis in \% of threshold value	from the East (Azimuth $\left.0^{\circ} \ldots 180^{\circ}\right)$ from the South-east (Azimuth $\left.45^{\circ} \ldots 225^{\circ}\right)$ from the East (Azimuth $\left.90^{\circ} \ldots 270^{\circ}\right)$ from the South-west $\left(\right.$ Azimuth $\left.135^{\circ} \ldots 315^{\circ}\right)$ from the East (Azimuth $\left.180^{\circ} \ldots 360^{\circ}\right)$
Sun position condition fulfilled, if	in the range

For numeric setting of the sun's range:

Sun	in the range
Azimuth [${ }^{\circ}$] from	$0 \ldots 360$
Azimuth [${ }^{\circ}$] to	$0 \ldots 360$
Elevation [${ }^{\circ}$] from	$0 \ldots 90$
Elevation [$\left[{ }^{\circ}\right]$ to	$0 \ldots 90$

The angle, which is specified for the direction of the sun (azimuth), is aligned according to the orientation of the facade. In addition, obstacles which cast a shadow on the facade, such as, for example, a wall or overhanging roof, can also be taken into account in the setting for sun direction (azimuth) and sun height (elevation).

Example Azimuth setting:

Top view
In the morning the building is fully shaded by surrounding trees.

Example Elevation setting:

For facade 1, shading must only be active in the azimuth marked red, as the sun can then shine on to the building without obstruction

Side view
When the sun's position is high, the facade is only shaded by the roof overhang. Shading is only necessary if the sun is low (in the figure approx. below 53°).

Shade settings:

No tracking	See chapter "Shadow
Shadow edge tracking	edge and slat tracking"
Slat tracking	
Shadow edge tracking and	
slat tracking	

Shadow edge tracking:

Type of tracking	Shadow edge tracking	
Orientation of the facade in ${ }^{\circ}$ [North 0°, East 90°, South 180°, West 270°]	0 ... 360	See Chapter "Orientation and inclination of the facade"
Inclination of the facade in ${ }^{\circ}$ [$0^{\circ}=$ no inclination $]$	-90 ... 90	
Window height in cm	1... 1000	
Maximum penetration depth of the sun into the room in cm	$10 . . .250$	
Shadow edge displacement at or above ... cm will be tracked	$1 . . .50$	

Slat tracking:

Shadow edge tracking and slat tracking

With shadow edge tracking the sunshade is not moved down fully; rather it is moved only so far that the sun can still shine a parametrisable distance $(e . g .50 \mathrm{~cm})$ into the room. This allows the room user to look at open air through the lower part of the window, and plants which may be on the window ledge to be exposed to the sun.
Note: The shadow edge tracking is only useable with a sunshade which is moved from the top downwards (e.g. shutters, textile shades or blinds with horizontal slats). This function is not useable with sunshades which are pulled in front of a window from one or both sides.

With slat tracking the horizontal slats of blinds are not fully closed but rather automatically adjusted so that the sun cannot shine directly into the room. Diffuse daylight can still enter the room through the slats and contribute to dazzle-free room lighting. Using slat tracking with external blinds, the entry of warm air into the room through sunshine can be avoided and, at the same time, energy costs for lighting the room can be reduced.

! Shadow edge

Sunshade when the position of the sun is high
The sunshade is only partially closed and automatically moved down only enough so that the sun cannot shine further into the room than specified via the maximum permitted penetration depth.

The slats can be set almost vertically without the sun shining directly into the room.

Sunshade when the sun is in a central position

The sunshade is automatically moved down only far enough so that the sun does not exceed the maximum permitted penetration depth in the room.
The slats are automatically closed further, so that the sun cannot shine directly into the room. Despite that, diffuse daylight can still reach the room and so contribute to the room lighting (daylight usage).

Sunshade when the position of the sun is low
The sunshade is automatically moved down almost fully, so that the sun does not shine too far into the room.

The slats are automatically closed further, so that the sun cannot shine in directly.

Orientation and inclination of the facade

Top view:

The facade orientation corresponds to the angle between the North-South axis and the facade vertical. The angle α here is measured in a clockwise direction (North corresponds to 0°, East 90°, South 180° and West 270°). The facade orientations result as follows:
Facade 1: α
Facade 2: $\alpha+90^{\circ}$
Facade 3: $\alpha+180^{\circ}$
Facade 4: $\alpha+270^{\circ}$

Example: The building in the picture is tilted by $\alpha=30^{\circ}$, i. e. the facade orientation is $30^{\circ}, 120^{\circ}$, 210° and 300°

Side view:
If a facade surface is not oriented horizontally, this must be
 taken into account. A forward inclination of the facade is counted as a positive angle; a backwards inclination (as in the picture) as a negative angle. This also allows a sunshade of a window built into a sloping roof surface to be controlled according to the current position of the sun.

If a facade is not a flat surface, but rather arched or bent, it must be subdivided into several segments to be controlled separately.

Slat types and determination of width and distance

In the slat tracking, a distinction is made between a sunshade or glare protection with horizontal slats and one with vertical slats.
A sunshade with vertical slats (e.g. external blinds) is typically moved downwards from the top. By contrast, an internal glare protector often consists of thin strips of material (vertical slats), which can be rotated around 180° and are pulled out from one or both sides of the window. Both types of slat can be adjusted by the weather station so that no direct sunlight falls into the room, but as much diffuse daylight as possible does.

In order for the slat tracking to set the slats correctly, their width and distance from one another must be known.

Horizontal Slats

Vertical Slats

Slat position with horizontal slats

With actuators, which, for blinds drives with 2 stop positions, make it possible for movement to a sunshade position to be specified via a position input in per cent, the upper stop position (i. e. sunshade fully opened) is controlled or reported via the value " 0% ".

If the lower stop position is to be approached, this is specified to the blinds actuator as sun position " 100% " or it will report reaching the lower stop position (i.e. sunshade fully closed) using this value. If blinds are moved down from the upper stop position, the slats first turn into an almost vertical position and the sunshade moves with closed slats to the lower stop position.

If the blinds are in the lower end position and the slats are fully closed, this slat position is described as both "vertical" and "100\%". Normally, however, fully closed slats do not have an exactly vertical position ($\alpha=0^{\circ}$) but rather form a slight angle with the vertical. With slat tracking, this angle must be determined and specified via the associated parameter.

Sunshade and slats closed (lower stop position: 100\%, slat position: 100\%)

From its "vertical" position (completely closed, 100\%) the slats can be adjusted to their horizontal position (fully opened, 0% or $\alpha=90^{\circ}$). For this, the drive used for the blinds defines whether this adjustment can take place almost continuously in many small steps (as with SMI drives, for example) or whether it is only possible in a few large steps (as with most standard drives).

Slat position horizontal $\left(0 \%, \alpha=90^{\circ}\right)$

With standard blinds, the slats can be adjusted further via their horizontal position past the point where the slat adjustment ends and the blinds begin to move upwards. The slats then form an angle between 90° und 180° with the vertical.

Slat position at the beginning of movement UP

Slat position with vertical slats

If an internal glare protector or screen with vertical slats is controlled by an blinds actuator, the position in which the slats are fully open is controlled or reported as the 0% slat position.

Fully opened vertical slats (slat position 0\%)

If the slats are fully closed, this position is controlled or reported as the 100% slat position. This is the position in which the glare protector is moved in front of the window from the stop position at the side. For this, the angle formed by the slats with the direction of movement is $>0^{\circ}$.

Fully closed vertical slats (slat position 100\%)

If the glare protector is later retracted (i.e. opened), in the process the vertical slats are turned into a position that is somewhat less than 180°.

Vertical slats at the beginning of movement UP

Facade 1 actions

1.1.1 Suntracer KNX-GPS

General settings
GPS Settings
Location
Rain
Night
Temperature
Temperature threshold value 1
Wind
Wind threshold value 1
Brightness
Brightness threshold value 1
Twilight
Twilight threshold value 1
Shading
Facade 1 settings
Facade 1 actions
Calendar time switch
Weekly time switch
Logic

Facade 1 actions

```
If it is bright enough
(brightness condition fulilled)
```

for more than

2 min
AND
the sun is shining on the facade (sun position condition fulfilled)

Then:
--> Object "Facade 1 Status" = 1
--> Movement position in \%
--> Slat position in \%

If it is not bright enough
for more than
Then:
--> Change movement position
--> Change slat position
Slat position in \%
10 min

30 min
it is still not bright enough
OR
the sun is no longer shining on the facade

Then:
-.> Change movement position
Movement position in \%

\rightarrow Object "Facade 1 Status" $=0$

If it is bright enough (brightness condition fulfilled)
for more than
AND
the sun is shining on the facade (sun position condition fulfilled)

Then: \rightarrow Object "Facade 1 status" $=1$	
\rightarrow Movement position in \%	$0 \ldots 100$ (or "follow shadow edge tracking")
\rightarrow Slat position in \%	$0 \ldots 100$ (or "follows slat tracking")

If it is not bright enough	
for more than	0 secs $\ldots 2$ hrs
Then:	Yes • No
\rightarrow Change movement position	$0 \ldots 100$
Movement position in \% (only if movement position should be changed)	Yes • No
\rightarrow Change slat position	$0 \ldots 100$
Slat position in \% (only if slat position should be changed)	

If afterwards it is still not bright enough	0 secs ... 2 hrs
OR	
the sun is no longer shining on the facade	Yes • No
Then: \rightarrow Object "Facade 1 status" = 0	$0 \ldots 100$
\rightarrow Change movement position	Yes • No
Movement position in \% (only if movement position should be changed)	$0 \ldots 100$
Change slat position Slat position in \% (only if slat position should be changed)	

Transmission behaviour of objects:

Movement position and slat position	transmit on change transmit on change and periodically
Transmit cycle (only if "periodically" is selected)	5 secs $\ldots 2$ hrs
Object transmits "Facade 1 status"	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Transmit cycle	5 secs $\ldots 2$ hrs
(only if "periodically" is selected)	

Heat protection:

Use heat protection	Yes • No
Movement position in \% (only if heat protection is used)	$0 \ldots 100$
Slat position in \% (only if heat protection is used)	$0 \ldots 100$

Block:

-------.................--.......---

Behaviour after block	react to the last automatic command wait for the next automatic command
Blocking object before 1st communication	$0 \cdot 1$

Calendar time switch

Calendar clock Period 1 / 2 / 3

From:	
Month	January \ldots December
Day	$1 \ldots 29 / 1 \ldots 30 / 1 \ldots 31$ (according to month)
Up to and including:	
Month	January \ldots December
Day	$1 \ldots 29 / 1 \ldots 30 / 1 \ldots 31$ (according to month)

Sequence 1	not active \cdot active
Sequence 2	not active \cdot active

Calendar clock period 1 / 2 / 3, Sequence 1 /2

Activation time hours	$0 \ldots 23$
Activation time minutes	$0 \ldots 59$
Deactivation time hours	$0 \ldots 23$
Deactivation time minutes	$0 \ldots 59$
Switching output transmits	• never • on change • on change to 1 \bullet on change to 0 • on change and periodically • on change to 1 and periodically \bullet on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs .. 2 hrs

Weekly time switch

1.1.1 Suntracer KNX-GPS

Monday ... Sunday not active • active

All 4 sequences for the selected day will be activated together.

Weekly clock Mo, Tu, We, Th, Fr, Sa, Su $1 . . .4$

1.1.1 Suntracer KNX-GPS

```
General settings
GPS Settings
Location
Rain
Night
Temperature
    Temperature threshold value 1
Wind
    Wind threshold value 1
Brightness
    Brightness threshold value 1
Twilight
    Twilight threshold value 1
Shading
    Facade 1 settings
    Facade 1 actions
Calendar time switch
    Calendar clock Period
            Calendar clock Period 1 Sequence 1
Weekly time switch
        Monday Sequence 1
        Monday Sequence 2
        Monday Sequence 3
        Monday Sequence 4
Logic
```

Monday Sequence 1

Activation time

hours
Activation time
minutes
Deactivation time
hours
Deactivation time minutes

Shall sequence 1 be allocated to the linkage weekly clock OR 1 ?

Switching output transmits
Transmit cycle

0	-
0	-
0	-
0	\wedge

Activation time hours	$0 \ldots 23$
Activation time minutes	$0 \ldots 59$
Deactivation time hours	$0 \ldots 23$
Deactivation time minutes	$0 \ldots 59$
Shall sequence 1 / 2 / 3 / 4 be allocated to the linkage weekly clock OR 1 / 2 / 3 / 4?	No (do not allocate) • Yes (allocate)
Switching output transmits	- never - on change - on change to 1 - on change to 0 - on change and periodically - on change to 1 and periodically - on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs .. 2 hrs

Note: If, for example, 15:35 is set as the switch-off time, the output switches off on the change from 15:35 to 15:36.

Use of weekly clock:

The communications object "Weekly time switch OR 1/2/3/4"

The Sequence 1 switch times of all weekdays is linked via the OR logic gate "Sequence 1" and can be used internally for your own logic connections as "Weekly time switch 1 ".

Sequence 1

Logic

Use logic inputs	No Yes
Object value before 1st communication for:	
Logic input $1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11 /$ $12 / 13 / 14 / 15 / 16$	01

AND Logic:

AND Logic $1 / 2$ / $3 / 4 / 5 / 6 / 7 / 8 \quad$ not active \cdot active

OR Logic:

AND Logic 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8

1. / 2. / 3. / 4. Input	do not use • all switching events the weather station makes available (see "Connection inputs of the AND logic")
Logic output transmits	a 1-bit object • two 8-bit objects

If the logic output transmits a 1-bit object:

Logic output transmits	a 1-bit object
if logic $=1 \rightarrow$ object value	10
if logic $=0 \rightarrow$ object value	100
Transmit behaviour	• on change • on change to 1 \bullet on change to 0 • on change and periodically • on change to 1 and periodically \bullet on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs .. 2 hrs

If the logic output transmits two 8-bit objects:

Logic output transmits	two 8-bit objects
Object type	- Value [0...255] - Per cent [0...100\%] - Angle [0...360] - Scene call-up [0...127]
if logic $=1 \rightarrow$ object A value	respectively 0 ... 255 for "Value" 0 ... 100 for per cent 0... 360 for angle 0 ... 127 for scenes
if logic $=0 \rightarrow$ object A value	
if logic $=1 \rightarrow$ object A value	
if logic $=0 \rightarrow$ object B value	
Transmit behaviour	- on change - on change to 1 - on change to 0 - on change and periodically - on change to 1 and periodically - on change to 0 and periodically
Transmit cycle (only if "periodically" is selected)	5 secs .. 2 hrs

Object A: Shade position height ($0=$ safe position, $255=$ fully extended).
Object B: Shade position slat angle ($255=100 \%$ closed, $200=$ approx. 80% closed).

Block:

Evaluation of the blocking object	On Value 1: block \| On Value 0: release On Value 0: block \| On Value 1: release
Blocking object value before 1st communication	$0 \quad 1$
Behaviour of the switching output	• do not transmit message \bullet transmit 0 • transmit 1
On block	[Dependent on the "Switching output transmits" setting]
On release (with 2 seconds release delay)	

The behaviour of the switching output on release is dependent on the value of the parameter "Transmit behaviour ..." of the AND logic:

Transmit behaviour on change	transmit no message \bullet transmit status of the switching output
Transmit behaviour on change to 1	transmit no message \bullet if switching output $=1 \rightarrow$ transmit 1
Transmit behaviour on change to 0	transmit no message \bullet if switching output $=0 \rightarrow$ transmit 0
Transmit behaviour on change and periodically	transmit switching output status
Transmit behaviour on change to 1 and periodically	if switching output $=1 \rightarrow$ transmit 1
Transmit behaviour on change to 0 and periodically	if switching output $=0 \rightarrow$ transmit 0

Use of the AND logic

Sun automation example

To illustrate, the AND logic can be used to define the conditions for shading, for example a brightness threshold value and the sun in a specific area. The re-activation of the shading following a wind alarm and a manually-operated block are also included in this example.

- \quad Sun in area 1: Describes the sun position for shading.
- Brightness threshold value 1: Defines the brightness from which shading will occur.
- Communications object Logic 1 inverted: Blocking function for the sun automation, e.g. via a button (blocking following manual operation). Logic $=0 \rightarrow$ released, Logic $=1 \rightarrow$ blocked.
For this the "Communications objects logic inputs" must be released in "General Settings" and the "Communications object Logic 1" be linked with group addresses via the button.
- Wind threshold value 1 inverted: The automation activates again once a wind alarm is over (i.e. if the other conditions are fulfilled, shading will occur again).

Connection inputs of the AND logic

```
do not use (AND)
do not use (OR)
Logic input }
Logic input }1\mathrm{ inverted
Logic input 2
Logic input 2 inverted
Logic input 3
Logic input 3 inverted
Logic input 4
Logic input 4 inverted
Logic input 5
Logic input 5 inverted
Logic input }
Logic input }6\mathrm{ inverted
Logic input }
Logic input }7\mathrm{ inverted
Logic input }
```

Logic input 8 inverted
Logic input 9
Logic input 9 inverted
Logic input 10
Logic input 10 inverted
Logic input 11
Logic input 11 inverted
Logic input 12
Logic input 12 inverted
Logic input 13
Logic input 13 inverted
Logic input 14
Logic input 14 inverted
Logic input 15
Logic input 15 inverted
Logic input 16
Logic input 16 inverted
GPS Malfunction = ON
GPS Malfunction = OFF
Temperature Sensor Malfunction = ON
Temperature Sensor Malfunction $=$ OFF
Wind Sensor Malfunction = ON
Wind Sensor Malfunction = OFF
Switching output rain 1
Switching output rain 1 inverted
Switching output rain 2
Switching output rain 2 inverted
Switching output night
Switching output night inverted
Switching output temp 1
Switching output temp 1 inverted
Switching output temp 2
Switching output temp 2 inverted
Switching output temp 3
Switching output temp 3 inverted
Switching output temp 4
Switching output temp 4 inverted
Switching output wind 1
Switching output wind 1 inverted
Switching output wind 2
Switching output wind 2 inverted
Switching output wind 3
Switching output wind 3 inverted
Switching output bright 1
Switching output bright 1 inverted
Switching output bright 2
Switching output bright 2 inverted
Switching output bright 3
Switching output bright 3 inverted
Switching output bright 4

[^0]Switching output weekly clock Wednesday 2 inverted
Switching output weekly clock Wednesday 3
Switching output weekly clock Wednesday 3 inverted
Switching output weekly clock Wednesday 4
Switching output weekly clock Wednesday 4 inverted
Switching output weekly clock Thursday 1
Switching output weekly clock Thursday 1 inverted
Switching output weekly clock Thursday 2
Switching output weekly clock Thursday 2 inverted
Switching output weekly clock Thursday 3
Switching output weekly clock Thursday 3 inverted
Switching output weekly clock Thursday 4
Switching output weekly clock Thursday 4 inverted
Switching output weekly clock Friday 1
Switching output weekly clock Friday 1 inverted
Switching output weekly clock Friday 2
Switching output weekly clock Friday 2 inverted
Switching output weekly clock Friday 3
Switching output weekly clock Friday 3 inverted
Switching output weekly clock Friday 4
Switching output weekly clock Friday 4 inverted
Switching output weekly clock Saturday 1
Switching output weekly clock Saturday 1 inverted
Switching output weekly clock Saturday 2
Switching output weekly clock Saturday 2 inverted
Switching output weekly clock Saturday 3
Switching output weekly clock Saturday 3 inverted
Switching output weekly clock Saturday 4
Switching output weekly clock Saturday 4 inverted
Switching output weekly clock Sunday 1
Switching output weekly clock Sunday 1 inverted
Switching output weekly clock Sunday 2
Switching output weekly clock Sunday 2 inverted
Switching output weekly clock Sunday 3
Switching output weekly clock Sunday 3 inverted
Switching output weekly clock Sunday 4
Switching output weekly clock Sunday 4 inverted
Weekly clock OR 1
Weekly clock OR 1 inverted
Weekly clock OR 2
Weekly clock OR 2 inverted
Weekly clock OR 3
Weekly clock OR 3 inverted
Weekly clock OR 4
Weekly clock OR 4 inverted

OR Logic

1.1.1 Suntracer KNX-GPS

General settings

GPS Settings
Location
Rain
Night
Temperature
Temperature threshold value 1
Wind
Wind threshold value 1
Brightness
Brightness threshold value 1
Twilight
Twilight threshold value 1
Shading
Facade 1 settings
Facade 1 actions
Calendar time switch
Calendar clock Period 1
Calendar clock Period 1 Sequence 1
Weekly time switch
Monday Sequence 1
Monday Sequence 2
Monday Sequence 3
Monday Sequence 4

Logic

AND Logic 1
OR Logic 1

1. Input	do not use	\checkmark
2. Input	do not use	\checkmark
3. Input	do not use	\checkmark
4. Input	do not use	\checkmark
Logic output transmits	a 1-bit object	\checkmark
if logic = $1 \Rightarrow$ - object value	1	\checkmark
if logic $=0 \Rightarrow$ object value	0	\checkmark
Transmit behaviour	on change of logic and periodically	v
Transmit cycle	5 secs	\checkmark
Block:		
Evaluation of blocking object	On value 1: block I On Value 0: release	\checkmark
Blocking object value before 1st communication	0	\checkmark
Behaviour of switching output		
On block	do not transmit message	\checkmark
On release: (with 2 seconds release delay)	Transmit value for current logic status	
OK	Default Info	

1. / 2. / 3. / 4. Input

do not use • all switching events the weather station makes available (see "Connection inputs of the OR logic")

All parameters of the OR logic correspond to those of the AND logic.

Connection inputs of the OR logic

The connection inputs of the OR logic correspond to those of the AND logic. In addition the following inputs are available to the OR logic:

Switching output AND Logic 1
Switching output AND Logic 1 inverted
Switching output AND Logic 2
Switching output AND Logic 2 inverted
Switching output AND Logic 3
Switching output AND Logic 3 inverted
Switching output AND Logic 4
Switching output AND Logic 4 inverted
Switching output AND Logic 5
Switching output AND Logic 5 inverted
Switching output AND Logic 6
Switching output AND Logic 6 inverted
Switching output AND Logic 7
Switching output AND Logic 7 inverted
Switching output AND Logic 8
Switching output AND Logic 8 inverted

:hager

www.hagergroup.com

[^0]: Switching output bright 4 inverted
 Switching output twil 1
 Switching output twil 1 inverted
 Switching output twil 2
 Switching output twil 2 inverted
 Switching output twil 3
 Switching output twil 3 inverted
 Facade 1 Status
 Facade 1 Status inverted
 Facade 2 Status
 Facade 2 Status inverted
 Facade 3 Status
 Facade 3 Status inverted
 Facade 4 Status
 Facade 4 Status inverted
 Facade 5 Status
 Facade 5 Status inverted
 Facade 6 Status
 Facade 6 Status inverted
 Switching output cal. clock Period 1 Seq. 1
 Switching output cal. clock Per. 1 Seq. 1 inverted
 Switching output cal. clock Period 1 Seq. 2
 Switching output cal. clock Per. 1 Seq. 2 inverted
 Switching output cal. clock Period Seq. 1
 Switching output cal. clock Per. 2 Seq. 1 inverted
 Switching output cal. clock Period Seq. 2
 Switching output cal. clock Per. 2 Seq. 2 inverted
 Switching output cal. clock Period Seq. 1
 Switching output cal. clock Per. 3 Seq. 1 inverted
 Switching output cal. clock Period Seq. 2
 Switching output cal. clock Per. 3 Seq. 2 inverted
 Switching output weekly clock Monday 1
 Switching output weekly clock Monday 1 inverted
 Switching output weekly clock Monday 2
 Switching output weekly clock Monday 2 inverted
 Switching output weekly clock Monday 3
 Switching output weekly clock Monday 3 inverted
 Switching output weekly clock Monday 4
 Switching output weekly clock Monday 4 inverted
 Switching output weekly clock Tuesday 1
 Switching output weekly clock Tuesday 1 inverted
 Switching output weekly clock Tuesday 2
 Switching output weekly clock Tuesday 2 inverted
 Switching output weekly clock Tuesday 3
 Switching output weekly clock Tuesday 3 inverted
 Switching output weekly clock Tuesday 4
 Switching output weekly clock Tuesday 4 inverted
 Switching output weekly clock Wednesday 1
 Switching output weekly clock Wednesday 1 inverted
 Switching output weekly clock Wednesday 2

